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ABSTRACT 

Two problems in electromagnetics are studied:  numerical analysis 

of electric currents in thin plates and experimental investigation of 

electromagnetic crack-tip blunting.  In the first part, electric cur- 

rents in thin plates are analyzed numerically with emphasis on expand- 

ing the capabilities of existing finite element programs.  Specifi- 

cally, the ability to calculate transport currents is added to pro- 

grams which originally computed only induced currents.  The final pro- 

grams are capable of handling transport currents alone or combined 

with induced currents generated by a transient external magnetic 

field.  Experimental and analytical verification of the resulting pro- 

gram is presented. 

The second half of this study deals with the blunting of fatigue 

cracks by melting a hole at the crack tip by electromagnetic means. 

This technique is investigated experimentally for stainless steel 304 

and titanium alloy Ti-6A1-4V.  The blunting technique is described in 

detail, and the results from the testing program are presented.  Anal- 

ysis of the data emphasizes the hole sizes produced and their effect 

on the ultimate strength and fracture resistance of the test speci- 

mens.  Electromagnetic blunting increases the ultimate static stress 

of stainless steel 304 plates by up to 19 percent and of Ti-6A1-4V by 

up to 78 percent.  The effect of electromagnetic blunting on resis- 

tance to further fatigue remains to be investigated. 
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CHAPTER 1 

INTRODUCTION 

Two individual topics are considered in the research reported 

here:  the numerical analysis of electric currents and 

electromagnetic crack, tip blunting.  The dual nature of this study 

requires a twofold approach be used, and therefore, this 

introduction is divided appropriately. 

1.1 NUMERICAL ANALYSIS OF ELECTRIC CURRENTS 

In the design of structures which are to be made of a 

conducting material and subjected in service to magnetic fields, 

the problem of induced currents is important.  Both the external 

magnetic fields and the magnetic fields induced by the currents 

themselves interact with currents flowing in the structure to 



generate forces.  Hence, in problems such as these, it is 

necessary to compute these induced currents, which are known as 

eddy currents, in order to know the loadings on the structure. 

Calculation of these eddy currents is especially important in 

structural situations involving strong magnetic fields. Examples 

of such situations include fusion reactors, superconducting motors 

and generators, magnetically levitated vehicles, transmission 

lines, magneto-hydrodynamic generators, and other electromagnetic 

devices.  These structures are subjected to large magnetic forces 

because of the interaction between their fields and the eddy 

currents flowing in them.  EDDYl and EDDY2 are computer programs 

which were developed in earlier research to address these types of 

problems.  In particular, EDDY2 analyzes currents induced in two 

dimensions, while EDDYl considers the one-dimensional problem. 

Structures such as these may also conduct directly applied 

currents, called transport currents, which interact with the 

magnetic fields to create additional forces. Magnetic forces 

created by transport currents in these structures may be large 

and, therefore, cannot be ignored.  In their original versions, 

EDDYl and EDDY2 lack the capability to address transport current 

problems.  The principal objective of this part of the study is to 

extend the formulations of these programs to handle situations 

involving transport currents.  Although the ideas presented here, 

apply to both programs, the actual changes are only made in EDDYl. 



In these programs the governing relationship and associated 

boundary conditions are formulated in terms of a stream function 

for the current.  The local magnitude of the current is given by 

the gradient of the stream function, and its direction is 

perpendicular to the gradient direction. 

Two major changes are required to implement the transport 

current capability. First, a rederivation of the governing 

integro-differential equation is necessary to account correctly 

for the magnetic field induced by the transport current.  Second, 

the finite element formulation must be modified to include both 

the local and nonlocal (induced) effects of the nonzero boundary 

conditions associated with the applied current. 

In the case of a two-dimensional plate with an applied 

transport current, the governing equation contains an additional 

integro-differential term not present in the original formulation 

used in EDDY2. Likewise, in the case of a one-dimensional plate 

there are two additional terms;  one for each edge.  These terms 

are refered to as "edge terms" because they are associated with 

the value of the stream function on the particular plate edges. 

As an alternative to calculating these terms in full, for simple 

geometries such as the one-dimensional plate, an equivalent field 

may be applied which produces the same effect as the edge terms. 



The necessary changes in boundary conditions are accomplished 

by rearranging the finite element equations to include the 

constrained values as loading terms.  Briefly, the changes 

required to do this in the programs are:  input the boundary 

values, compute the necessary stiffness matrix, modify the load 

terms with appropriate constraining terms, and alter the program 

where homogenous boundary conditions are automatically assumed. 

For these changes there is no alternative approach as there is in 

the case of the governing differential equation. 

By forcing the stream function to be zero on all plate 

boundaries the scope of the original programs was restricted to 

those problems in which the resulting currents flow in closed 

loops entirely within the conductor.  The modifications open the 

possibility of solving problems where the resultant currents flow 

into and out of the conductor.  For example, the problem of a 

conducting plate with a transport current imposed on it can now be 

analyzed. 

1.2 ELECTROMAGNETIC CRACK TIP BLUNTING 

One significant mode of failure for structures and structural 

components is brittle fracture.  Failure by fracture, moreover, is 

frequently without warning, and therefore, such failures may be 

costly in terms of life and property. 



Although cases of brittle fracture have been documented for 

years, this problem was not fully addressed until numerous ships 

failed in this manner during World War II.  These failures 

initiated considerable research in the area of fracture mechanics. 

Despite an improved understanding of these problems, however, 

brittle fractures have continued to occur. An example of the 

continued problem is the 584-ft-long Tank Barge I.O.S. 3301 which 

broke in half in 1972 while at dock in calm water. Most of the 

documented failures of this type have been in airplanes, ships, 

pressure vessels, tanks, and bridges. 

Much investigation into the behavior of cracks has been 

conducted, and the results have been used to develop suitable 

fracture-control plans for a variety of situations.  This study 

focuses on the blunting of existing cracks and the increases in 

strength and fracture toughness possible by such methods. 

In the proposed blunting technique, a sufficiently large 

current density is concentrated at the tip of a crack to cause 

melting. The necessary current may be either an induced current 

or a transport current, but only the latter is used in this study. 

Magnetic forces act on the molten material to create a hole at the 

crack tip.  This results in a potential increase in fracture 

strength. 



From a fracture mechanics perspective, the idea of 

electromagnetically blunting cracks is similar to the drilled-hole 

method of arresting cracks.  In the latter approach, a hole is 

drilled at the tip of a crack to lower the stress concentration 

and keep the crack from growing.  This technique is commonly used 

to stop crack growth in airplane components and bridges. 

From an electromagnetic standpoint, the proposed method can 

be thought of as an extension of the use of induced currents for 

nondestructive testing.  By inducing currents in a structure 

containing a crack, one can concentrate current at the tip of the 

crack. Localized heating occurs at the points where the current 

density is greatest.  By infrared scanning one can detect the 

regions of higher temperature or "hot spots" and thereby locate 

the ends of the crack. Extending this method to blunting involves 

increasing the current to the point where melting occurs at the 

hot spots. 

To investigate the blunting of cracks electromagnetically, 

experiments are conducted on long, thin plates.  By subjecting the 

strips to a fatigue loading, one generates cracks in the side of 

each specimen. A current pulse is then applied to the sample and 

the resulting concentration of current produces a hole at the 

crack tip.  Figure 1.1 shows a magnified view of a typical hole 

which was formed in stainless steel.  Both blunted and unblunted 

strips are then tested for ultimate load. 



Figure 1.1 Typical Blunted Configuration in Stainless Steel 304 
(Magnified 25X) 
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This study also analyzes the stresses in the geometry of the 

blunted specimens.  These stresses are determined by analytical 

solutions and the finite element method.  Results of these 

analyses are then used to express the data obtained from the 

blunting experiments in terms of apparent stress intensity factors 

at ultimate load. 

1.3 OVERVIEW 

As indicated at the beginning of this chapter, the entire 

discussion is divided according to the two electromagnetic 

problems under consideration:  numerical analysis of electric 

currents and electromagnetic crack, tip blunting.  Chapter 2 

consists of two parts, each of which covers the background theory 

for one of these areas.  Chapter 3 is related to the finite 

element method as it is applied to the analysis of transport 

currents in this study.  The experimental work involving the 

electromagnetic blunting of cracks is treated in Chapters 4 and 5. 

For each area, Chapter 6 contains a summary, a list of 

conclusions, and suggestions for further research. 



CHAPTER 2 

BACKGROUND THEORY 

Two distinct fields of study are especially important to this 

work..  They are fracture mechanics and magnetomechanics.  The 

current chapter is divided into two main sections, each of which 

is devoted to one of these areas. 

2.1 FRACTURE MECHANICS FUNDAMENTALS 

This section provides a brief overview of fracture mechanics 

concepts as they apply to the problem at hand.  There are two 

basic stress situations which need to be examined as part of this 

project.  First is the stress field surrounding the fatigue crack, 

and second the changed stress pattern due to the blunted geometry. 

In the case of the blunted geometry, it is desired to know 

the stress field around a circular hole at the end of a long 



10 

slender notch, Figure 2.1(a).  Very little has previously been 

written about the state of stress for this configuration. 

However, a state of stress very similar to the one at hand will 

exist in the configuration shown in part (c) of that figure.  The 

shaded regions shown in part (b) sustain little stress and, 

therefore, the stress field will be changed very little by 

ignoring them.  This idea parallels the "equivalent ellipse" 

concept proposed by Cox [1] for ovaloids and similar shapes. 

From the fracture mechanics literature it is evident that 

several methods have been proposed for the analysis of cracks and 

notches.  There are three fundamental viewpoints from which these 

problems may be studied.  These are:  1) the energy balance 

approach, 2) the stress intensity factor approach, and 3) the 

surface layer energy and strain energy density approach.  The 

first and second methods have greater acceptance in the field of 

fracture mechanics and are more applicable to this study than the 

third.  For completeness, the third approach is briefly discussed 

in the following background section, while entire sections are 

devoted to the first two approaches. 

Preceding the descriptions of the first two techniques, a 

brief historical account of this area of fracture mechanics is 

given. 

2.1.1 BACKGROUND 

This section traces the development of fracture principles. 

One can see how improved theories have arisen to describe more 

accurately the conditions of stress around cracks, notches, and 
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(a)  Blunted Crack 

^ZZZZZZZZZZZT 

(b)  Regions of Low Stress 

(c)  Geometry Considered 

Figure 2.1 Specimen Geometries 



12 

other disturbances.  Furthermore, this brief review helps to show 

how the different approaches are interrelated and what their 

relevance is to the problem under study. 

Many of the initial theories in fracture mechanics were 

developed through study of the problems of a uniformly stressed 

plate containing an elliptical hole or an isolated crack.  The 

literature on this subject frequently mentions the work of Inglis 

[2] in solving the elliptical hole problem as a significant first 

step in addressing fracture problems.  Inglis' study analyzed the 

concentration of stress caused by the presence of the elliptical 

notch.  Further studies in stress concentration for other shapes 

followed with the work of Neuber [3], Timoshenko and Goodier [4], 

and Savin [5]. 

Some difficulties arise in extending these stress 

concentration solutions to situations containing cracks.  To make 

this transition various workers have used the notion that a crack 

is a limiting case of the slender elliptical hole [6].  In the 

elliptical hole the stress at the tips is proportional to the 

major-to-minor axes ratio.  As this ratio goes to infinity, the 

case of the elliptical hole becomes that of a crack in the limit. 

Hence, according to the stress concentration idea, which is based 

on linear elasticity, the stresses become singular at the tip as 

the notch becomes a crack. 

The stress concentration theory can be used to predict the 

failure of structural elements containing notches or other 
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non-singular disturbances.  However, as Sih [7] points out in his 

discussion of Griffith's early work on fracture, this theory is 

not easily applied to cracked configurations as a failure 

criterion.  Griffith used the stress concentration concept for 

notch failures and a completely separate theory for crack 

failures. 

The separate theory developed by Griffith for cracks is based 

on an energy balance.  Several modifications have since been 

suggested for this theory since Griffith first proposed it in 

1921.  The energy balance approach to crack analysis is discussed 

in the next section of this chapter. 

The next major contribution to fracture mechanics was made in 

1957 when Irwin [8] suggested a completely different approach than 

Griffith's for the study of cracks.  Section 2.1.3 summarizes this 

theory which is known as the stress intensity factor approach. 

The concept advanced by Irwin considers the state of stress 

surrounding the crack tip. 

Development of fracture mechanics theory up to this time 

still considered separate approaches for cracks and for notches. 

Recently, Sih [9] has proposed a consistent theory for both cracks 

and notches.  Refered to as the surface layer energy and strain 

energy density approach, it considers an element always a finite 

distance in front of the crack tip.  The theory assumes the crack 

will advance after the element has absorbed a critical amount of 

energy.  This energy is then released upon material separation. 
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2.1.2 THE ENERGY BALANCE APPROACH 

As mentioned earlier, the energy balance theory was first 

presented by Griffith in 1921.  Since then, many adaptations and 

modifications to the basic theory have been suggested to improve 

and extend its applicability.  A concise treatment of this theory 

is given by Hayes [10]. 

The energy approach is based on the principle that an 

existing crack, will grow when the strain energy released during an 

increment of crack growth is greater than the energy required to 

form the new crack surfaces.  Hence, with an excess amount of 

energy being given off, an unstable situation exists which causes 

the crack to propagate.  This instability can be expressed by the 

relationship: 

^^tot "  ^^S (2-1) 

in which 5U   is the change in strain energy for an increment of 

crack growth and 6U is the surface energy used in opening the 

crack increment.  The utility of the energy balance theory is 

limited here by the need to compute these terms.  Griffith was 

able to derive with the following equation for the critical 

stress, O , by assuming completely elastic behavior and the 

classical surface energy theory.  For an isolated crack of 

length 2a: ' ^ 
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a       =   jiiX (2-2) 

in which y  is the specific surface energy and E is the modulus of 

elasticity. 

To check his theory, Griffith ran a series of experiments 

with hard glass.  Glass exhibits little plastic deformation before 

failure and hence conforms well to the assumption of pure elastic 

behavior.  The experimental results, however, did not agree well 

with the theory in equation (2-2).  Later, a refinement to the 

theory was suggested which produced conformity with the 

experimental results.  In the latter refinement the surface energy 

term, 2 Y, is replaced with a term, ^    , which accounts for the 

energy absorbed by plastic deformation.  This provides for a small 

area of plasticity around the crack tip. 

Additional studies were done on this plastic surface energy 

term.  These resulted in a further modification of Griffith's 

theory based on strain energy release concepts.  To apply this 

theory, the strain energy release rates for various conditions 

must be determined experimentally. 

Finally, the energy balance approach can be useful as a 

failure criterion for fracture studies but with several 

limitations.  The foremost of these requires the area of yielding 

around the crack tip to be small relative to the dimensions of the 

structure.  Also, sufficient accuracy appears to be possible only 

with the latest refinement of the theory which employs strain 

energy release rates.  This necessitates adequate experimentation 

to determine these rates. 
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2.1.3 THE STRESS INTENSITY FACTOR APPROACH 

The stress intensity factor approach is based on solutions 

from the theory of elasticity.  Therefore, complete elastic 

behavior has been assumed.  In reality, however, a region of 

yielding will always exist in the highly stressed area surrounding 

the crack tip.  Hence, this theory is most appropriately applied 

to situations where the plastic zone can be assumed to be small 

relative to the other dimensions. 

Before discussing the stress intensity factor approach 

further, two important points concerning its application to this 

work must be made.  First, the stress intensity factor approach is 

devoted to the analysis of cracks or exceptionally slender notches 

which exhibit singular behavior at the tip.  This theory was 

developed out of the need to compare the intensity of stress 

singularity between different cracks which was not possible with 

conventional theory.  Therefore, only the unblunted crack geometry 

can be analyzed by this approach as it was originally proposed. 

This section describes the stress intensity factor approach in 

this context, while a suggested extension of the theory for the 

blunted crack geometry is treated in Chapter 5. 

The second important point to be made involves the assumption 

of a small plastic zone. This assumption is not always valid when 

the theory is applied to plane stress situations such as plate 
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test specimens.  The stress intensity factor approach is based on 

plane strain conditions which generally involve a small plastic 

zone.  A situation of plane stress exists in the strips used in 

this study.  Several difficulties to be discussed subsequently, 

arise when the concept of stress intensity factors is extended to 

the case of plane stress.  The literature admits to inconsistent 

distinction between "plane stress" and "plane strain" and points 

to the need for further research to extend fracture analysis 

concepts to the former. 

The stress intensity factor is based on linear elasticity and 

hence carries the restriction of "small-scale yielding" to 

situations where it is applied.  Nevertheless, this method is the 

most widely used in fracture analysis and it is still applied to 

situations where the size of the plastic zone is considerable. 

The degree of accuracy required limits how large the nonlinear 

zone may be to still have an acceptable solution. 

A correction to this theory for large-scale yielding has been 

proposed which considers an "effective crack size." Tada et 

al.[13] assert that this "effective crack size" correction is 

especially appropriate for observing trends and relating similar 

situations.  One should bear in mind that the use of fracture 

analysis in this report is mainly for comparitive purposes rather 

than a precise determination of the stress state in one case. 
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Based on the literature and related discussions [32], the 

modification of the stress intensity approach used in Chapter 5 is 

judged to be valid for the problem at hand. 

The earlier discussion on fracture mechanics history 

indicated that the stress intensity factor approach was first 

proposed by Irwin [8].  Irwin based his method on the work in 

elasticty done by Westergaard [11]. 

These studies provide one with solutions for stresses and 

displacements around the crack tip.  The solutions were developed 

for three different loading conditions.  Figure 2.2 shows these 

three conditions which are known as the basic "modes" of crack 

surface displacement.  Rolfe and Barsom [12] note that any crack 

configuration can be expressed as a superposition of these three 

modes.  Likewise, the linear solution to any crack problem can be 

obtained by combining the solutions to each of the component 

configurations. 

The fundamental premise of the stress intensity factor 

approach is that the pattern of stress (or strain) will be 

indentical around any crack tip of a given mode.  The magnitude of 

the stresses (or strains) is expressed in a linear factor based on 

the value of the load and the geometry of the structure.  This 

multiplier is known as the stress intensity factor (SIF). 

Values of the stress intensity factor can be determined in a 

variety of ways which will be described later. These factors are 

tabulated in handbooks (such as Tada et al., [13]) for a wide 
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Figure 2.2 The Basic Modes of Crack Surface Displacement 
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range of loading configurations and geometries.  The following 

section applies the stress intensity factor approach to the 

cracked test specimen used in this work. 

2.1.3.1 The Case Under Study:  Mode I. 

In this study tests were done on thin strips under tensile 

load.  The situation is one of plane stress in Mode I.  Using the 

notation in Figure 2.3, Tada et_ al.[13] present the stress field 

for this condition as follows: 

•^x - 
(2TTP) 

^cos 2 
^        .    9    .    3e 
I  - sin j sin -p (2-3a) 

a    = 
(2^p) 

TCOS  2 
T _,    .    e    .    3e 
1 + sin 2 sin -^ (2-3b) 

I .0        e        3e 
V ^ T;—j ^"""2 ^°^ 2 ^°^ ~ 

(2^p)^ 

(2-3c) 

'z = <^xz = ^yz = ° 
(2-3d) 
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Figure 2.3 Coordinates at the Leading Edge of a Crack 
(note:  9 is contained in the x-y plane) 
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In these equations K is the stress intensity factor for Mode I, 

For Modes II and III the factors are K  and K   , respectively. 

Furthermore, these expressions neglect higher order terms 

1/2  3/2 
m P, e.g.,  p   , p   , etc.  The solution then, is most accurate 

when p is small compared to the dimensions of the plate. 

Tada et al.[13] describes the K's physically as "the 

intensity of load transmittal through the crack, tip region as 

caused by introducing the crack into the body of interest." Viewed 

in this manner, the stress intensity factor is valuable for 

comparing different cracks because it provides a measure of the 

severity a crack to a structure.  The question of wether the 

stress intensity factor can be used to describe a nonsingular 

situation is subject to much controversy.  This question is 

important to this study because herein it is necessary to compare 

the stresses around a sharp-tipped crack with the stresses around 

the blunted crack.  Chapter 5 addresses this idea in more detail 

while the current discussion will continue to focus on the stress 

intensity factor approach in the conventional sense. 

2.1.3.2 The Relationship to Stress Concentration Factors 

A stress concentration factor approach does not offer the 

advantages of the stress intensity factor approach as just 

described.  The latter approach is much more useful for studying 

cracks.  Nevertheless, stress intensity factor concepts are 

closely related to the idea of stress concentration factors. 

For an elliptical notch in a plate the stress concentration 

factor is the ratio of the maximum stress to the applied stress. 
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This parameter provides an easy way to compare the amount of 

concentration caused by different interuptions to stress flow. 

Basically, by considering a slender notch with a tip radius, r, 

one approaches the case of a crack in the limit as r goes to zero. 

By reducing the case of the ellipse to that of a crack, the stress 

concentration factor goes to infinity.  Hence, this factor is not 

useful for characterizing different cracks because the factor will 

be infinity for all cracks.  Also, the stress concentration factor 

says nothing about the stress field surrounding the crack tip. 

Only the condition at the point of maximum stress is described. 

On the other hand, a stress intensity factor approach 

characterizes the entire stress field surrounding a crack tip. 

The main principle of this method asserts that the behavior 

of a crack can be described by the stress field around the tip. 

Furthermore, the method's primary advantage lies in the 

characterization of this stress field by a single parameter, K. 

The problem thus reduces to one of determining K, the stress 

intensity factor. 

2.1.3.3 Determining Stress Intensity Factors 

Both theoretical and experimental methods are used to 

determine stress intensity factors.  Cartwright and Rooke [14] 

give an excellent review of the ways in which K's are found. 

Of the wide range of theoretical methods of computing stress 

intensity factors, this study considers three in particular. 

These are analytical solutions, stress concentration solutions, 

and finite element analyses.  Other methods are available such as 

boundary collocation, conformal mapping. Green's functions. 
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integral transforms and dislocation models, force-displacement 

matching, and alternating methods.  More on these is available in 

Reference 14.  Each of these individual methods is especially 

useful in solving several different classes of problems having 

similar geometries. 

Again, analytical, stress concentration, and finite element 

solutions are used to determine K's in this work.  The analytical 

method seeks to solve the equations of elasticity and satisfy the 

boundary conditions exactly.  Two forms of elasticity solutions 

have been proposed in terms of Airy's stress functions.  These are 

the Westergaard stress function and the complex stress functions 

of Mushkelishvili. 

While these methods provide a convenient expression for K, 

the number of configurations which can be solved in this manner is 

limited.  Fortunately, a solution does exist for a finite width 

strip in tension containing a notch in one side. 

Another way to obtain stress intensity factors is from stress 

concentratation factors.  A relationship between stress intensity 

factors and stress concentration factors is developed in Chapter 

5.  Stress concentration factors are available for a wide variety 

of situations and hence the ability to convert them to stress 

intensity factors is valuable. 
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The use of finite element analysis to determine stress 

intensity factors can be approached in several ways depending on 

the problem at hand.  These approaches can be generalized into 

three groups:  1) directly computing K's, 2) indirectly computing 

K's from changes in energy, and 3) utilizing special crack tip 

elements.  The finite element stress analysis done in this work, 

however, does not use these methods.  Instead, finite elements are 

used to determine the stress concentration factors from which the 

stress intensity factors are in turn obtained. 

2.1.3.4 Critical Stress Intensity Factors 

Any discussion of stress intensity factors should mention the 

ability of this approach to describe the conditions under which a 

crack propagates.  In such a critical crack situation the crack 

penetrates further into the structure.  Researchers in fracture 

mechanics have shown a relationship to exist between the strain 

energy release rate and the stress intensity factor.  From the 

discussion of energy concepts in fracture earlier in this chapter, 

a crack propagates if a critical strain energy release rate is 

reached.  Together, these two points imply that the occurence of 

fracture may be expressed by a critical stress field around a 

crack or notch, or, in other words, a critical stress intensity 

factor which is a property of the material.  Thus, a value of K 
cr 

is defined as the critical stress intensity factor and is 

associated with a critical energy or force necessary to drive a 

crack forward. 

In Mode I the critical stress intensity factor K  is also 
Ic 

refered to as the fracture toughness.  Since Mode I is generally 
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the most critical crack situation, the fracture mechanics 

literature deals with this Mode almost exclusively as will the 

following discussion. 

Values of K  have been determined and are tabulated for a 

wide range of materials under standard ASTM plane strain 

conditions.  For Ti-6A1-4V the fracture thoughness is 74.6 MParm 

(68 ksi'/in) [15].  These values can be used to predict adequately 

the occurrence of fracture in configurations which are 

sufficiently close to a state of plane strain. 

When the conditions of plane strain are not met, K  can no 
Ic 

longer characterize the incidence of fracture as a material 

property.  Tests have shown the fracture toughness to be strongly 

dependent on plate thickness.  Only for sufficient thickness, can 

a specific value of the parameter be associated with the material. 

Therefore, in the current work the tabulated values of fracture 

toughness do not apply because the situation is one of plane 

stress. 

Boresi et al.[6] note that in a plane stress case, the actual 

fracture load will typically be several times that which is 

predicted with K  .  Large amounts of yielding will occur around 

the crack zone prior to fracture.  This behavior was observed as 

part of this study in comparison of experimental results and 

analytical calculations.  Further discussion of this is given in 

Chapter 5. ' 

In the fracture analysis of real structures the value of K 

must be accurately determined using one of the methods described 
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earlier.  These techniques must account for many factors such as 

loading, geometry, corrosion environment, and fatigue.  Crack 

initiation in a notch or the extension of an existing crack in a 

structure can then be predicted satisfactorily by how close this 

parameter, K, approaches its critical value for the mode, 

material, and stress state in question. 

2.2 MAGNETOMECHANICS THEORY 

The fundamental physical concepts involved in 

magnetomechanical problems are first briefly discussed in general. 

Following this presentation is a more specialized treatment of the 

theory's application to thin conducting plates in terms of a 

stream function formulation. 

2.2.1 BASIC CONCEPTS 

Analysis of conducting structures subject to magnetic fields 

is complicated because the effects which must be studied involve 

more than one discipline.  The major areas concerned include 

electromagnetics, continuum mechanics, and thermodynamics.  Only a 

brief discussion of the development behind the necessary 

formulations is presented rather than a detailed derivation of the 



28 

governing equations.  A full account of this derivation can be 

found in Reference 16. 

-^' 
From each of the three disciplines involved one has a set of 

equations and boundary conditions.  The equations from 

electromagnetic theory are Maxwell's equations, the Biot-Savart 

Law, the Lorentz body force equation, and Ohm's Law.  From 

continuum mechanics we have the equilibrium, compatibility, and 

constitutive equations.  Thermodynamic effects are governed by 

energy balance equations and conductivity relationships. 

Yuan et al.[17] present a chart which outlines some of the 

couplings between the fields associated with each of these three 

disciplines.  This chart is reproduced in Figure 2.4. 

These equations are coupled in several ways.  Mechanical 

equilibrium and temperature effects are related through the 

Duhamel-Neumann Law.  This relationship introduces an QAT term 

into the mechanical constitutive equations (where Q is the 

coefficient of thermal expansion).  The electromagnetic and 

thermal conditions are coupled through the Joule heating effects. 

The interdependence of the mechanical equilibrium and 

electromagnetic field is the most complicated because several 

relationships are involved.  One has the Lorentz force created 

when a magnetic field acts on moving charges.  One also has 

Faraday's Law which implies that currents will be induced when the 

magnetic field is changed by the displacement of the structure. 



ELECTROMAGNETIC 

FIELD 

Boundary  Condition,   Maxwell   Stress  Tensor 
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FIELD 

Lorentz  Body Force   (J  x  B) 

^- Velocity  Effect,   Ohm's   Law   (V  x  B) 

Boundary Condition,   Faraday's  Law   (V  x  B) 
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THERMAL 
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Duhamel-Neumann 
Law (aAT) 

Figure 2.4  A Schematic of One Form of Magnetothermomechanical Coupling 
(E = electric field, J = electric current, B = magnetic flux, 
V = velocity field, \}=  magnetic permeability, a= coefficient 
of thermal expansion,  T = change in temperature from reference 
temperature, H = magnetic Intensity.) 
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Together, these last two effects can be thought of in terms of a 

negative stiffness.  In other words, further deformations cause 

the loads on the structure to increase. 

Another coupling effect also exists between the mechanical 

and electromagnetic fields.  The motion of the plate in the 

magnetic field will induce currents within the plate itself.  This 

is indicated mathematically by the velocity term in Ohm's Law. 

However, for the type of problems being considered in this study, 

this effect is assumed to be negligible. 

Physically, the overall interaction can be described for the 

specific case of a plate as follows.  Electric currents (known as 

eddy currents) are induced in the plate by the magnetic field. 

The eddy currents generate a further magnetic field which opposes 

the external one.  Both of these magnetic fields interact with 

currents already present in the structure to cause magnetic 

forces.  These forces deform the structure, which in turn changes 

the magnetic field distribution, and hence the coupled interaction 

between these effects is evidenced.  Some specific applications of 

this theory for thin plates is given in the next section. 
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2.2.2 APPLICATION OF THE THEORY TO PLATE PROBLEMS 

This application of the theory concerns the basic problem of 

an elastic conducting plate in a magnetic field.  An important 

aspect of this type of problem is that the magnetic fields exist 

both in the plate and in the surrounding free space.  Hence, the 

problem is three dimensional.  Techniques used to solve these 

problems are discussed first, followed by a treatment of the types 

of solution available.  A list of simplifying assumptions is then 

presented. 

2.2.2.1 Solution Techniques 

The coupled nature of problems of this type and the complex 

equations governing them make analytical solutions obtainable only 

for simple cases.  Subsequently, these problems have usually been 

solved using an uncoupled approach where one performs discrete 

calculations for magnetic effects and then computes thermal and 

mechanical response based on these results. 

The situation is further complicated when time-dependent 

magnetic fields are present.  In this case a numerical approach is 

necessary even for the uncoupled problem.  With this in mind the 

computer programs EDDYl and EDDY2 were developed to analyze thin 

conducting plates subjected to time-varying magnetic fields. 

These programs use a finite element approach to compute the eddy 

currents and then determine the induced temperatures and magnetic 

pressures based on those results. 

Two different techniques of formulating the uncoupled 

electromagnetic problem have been advocated by previous 
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researchers.  One method obtains the solution in terms of magnetic 

vector potential, A.  The vector potential is defined by: 

B = V X A (2-4) 

The governing equations are then written throughout the entire 3D 

space in terms of this value.  Other studies have developed finite 

element formulations based on this technique.  Since EDDYl and 

EDDY2 are not based on this method it is not discussed further. 

The second method introduces a stream function, l+J , which 

applies to the one- or two-dimensional plate only.  A formulation 

based on this function is used in EDDYl and EDDY2.  A finite 

element model is then used to determine the value of the stream 

function throughout the plate.  The development based on the 

stream function formulation is used throughout this report.  The 

formulation of the uncoupled electromagnetic problem based on the 

stream function will be briefly described in section 2.2.3.  The 

temperature and pressure calculations based on the electromagnetic 

solution are also noted.  A more detailed development of the 

formulation will be given in a later chapter when the extension to 

transport currents is discussed.  Yuan [16] gives additional 

treatment of this theory as it is used in the original versions of 

the programs. 
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2.2.2.2 Types of Solution 

By considering different frequencies in these problems, the 

possibility for two different types of solution is evident.  These 

are refered to as the local and nonlocal approaches.  The programs 

EDDYl and EDDY2 perform analyses based on both solution 

techniques. 

A local approach may be used when the frequency of the 

magnetic field or transport current is low.  This allows • 

simplification of the formulation to be made and the aim is then 

to satisfy the governing differential equations and boundary 

conditions directly.  The region considered in the problem then is 

the full surrounding space, theoretically extending to an infinite 

distance. 

For high frequencies on the other hand, a nonlocal solution 

is used.  This approach reformulates the problem using integrals 

so that the domain of the problem is reduced to the conductor 

itself. 

2.2.2.3 Assumptions 

Several important assumptions used in this formulation should 

be made clear [16],[17]. 

1.  The material is assumed to be a good conductor which is not 

magnetizable or polarizable.  This assumption has implications 
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on the atomic level.  Charge dipoles exist in the material due 

to the "spin" property of the atoms.  Consideration will be 

given only to materials in which the dipoles do not reorient 

themselves under an external field to create additional field 

intensity. 

2. Material properties are assumed to be independent of 

temperature. 

3. Eddy current density across the thickness of the plate is 

assumed to be constant. 

4. The electromagnetic relationships are considered in their 

quasistatic form.  As noted by Moon [18], this observation is 

valid, because the wavelengths associated with frequencies in 

these problems are much longer than conventional structure 

dimensions.  This manifests itself in allowing the velocity 

term of Ohm's Law to dropped as was mentioned earlier. 

5. Eddy currents are assumed to flow parallel to midsurface of 

the plate. 

6. The normal component of the induced magnetic field does not 

vary across the thickness of the plate. 
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2.2.3 EDDY CURRENT ANALYSIS IN PLATES USING A STREAM FUNCTION 
SOLUTION 

The previous section discussed the theoretical aspects of 

analyzing thin conducting plates subject to magnetic fields.  The 

solution method using stream functions was noted.  This chapter 

defines the stream function and develops the governing equations 

necessary to solve these problems. 

First, some definitions pertaining to the following 

discussion are given here: 

E = Electric field 

B = Magnetic field 

J = current density 

O =  material conductivity 

M = magnetic permeability 

w = frequency of the applied field 

2.2.3.1 Definition of the Stream Function 

The stream function is defined in terms of the current. 

Following the assumptions stated earlier, the current will be 

considered uniform over the thickness of the plate.  In the 

following development I = hj is used as the current density, where 

h is the plate thickness and I is current per unit width. 

First, it will be helpful to define some other terms used in 

the discussion to follow.  A cartesian coordinate system, (x,y,z), 

is used along with a set of orthogonal coordinates, (Q, 3).  The 
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latter coordinate system is coincident with the midsurface of the 

plate.  The relationship between the two coordinates is given by: 

X = x(a, B)  ^     y = y(c', e)        Z = Z(a, 6)      (2-5) 

The unit vectors in the a and 3 directions are then defined as: 
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The current density vector, I, can then be expressed as 

I = l''(a, 6) e + I^(a, 6) § (2-9) 

Based on this the stream function, ly , is defined in terms of the 

current density components: 

g 36 
^6 ^ iL li 
^    f 3a 

(2-10) 
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One physical significance of the stream function is that the 

current as travels along lines of constant stream function. 

2.2.3.2 Basic Governing Equation 

The basic governing equation for ly comes from Faraday's Law 

of Induction:  curl E = -6B/6t.  The magnetic field can be thought 

of as the sum of the applied field, B°, and the induced field, B . 

Furthermore, by substituting in for E using Ohm's Law (E = I/ha ) 

and using the definition of l+J, one obtains the governing equation 

in vector form.  For the case of a flat plate this equation is: 

,2* = oh I, (B° . B') "-)■ 

This form considers only the in-plane current and assumes the 

mid-plane of the plate is aligned with the x-y plane. 

In one dimension this problem simplifies to the case of an 

infinite strip.  The program EDDYl analyzes this problem. 

2.2.3.3 The Induced Field Term 

The induced magnetic field can be determined from the Biot 

Savart Law.  Reference 19 gives the induced field at the midplane 

of the plate (z=0) as: 

(2-12) 
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in which A is the surface area of the top or bottom face.  The 

point at which B  is computed is given by the x and y coordinates. 

The x' and y' coordinates reference the current element which is 

contributing and it is over these coordinates that the integration 

is performed. 

In this formula ^} is assumed constant through the thickness 

and zero on the lateral boundaries of the plate as is appropriate 

for the eddy current problem.  When ^} is nonzero on the boundaries 

of the plate in connection with the transport current problem, 

this expression will involve additional terms which represent the 

effect of the edges on the induced magnetic field.  The 

development of these terms and their implication is the subject of 

Chapter 3. 

2.2.3.4 Governing Equation for the Steady State Problem 

By considering the case of a harmonically applied magnetic 

field, B = B6 e  /2, the currents are then also harmonic and the 

problem becomes steady state. 

The previous equations are now combined to obtain one 

differential equation for substitution into the Galerkin 

criterion.  First, substitute B  (from above) and B  (from eqn. 

2-12) into the governing equation for l|J(eqn.  2-11). 

Furthermore, one can simplify and generalize the formulation by 

nondimensionalizing with respect to the half thickness, h/2, as 

follows: 
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, _ hB ^^itot .   ■_ 2X .  ^, _ 2Y . 

2X' 2Y 
(2-13) 

^ = IT '   " = 

After substitution the equation is in terms of the 

non-dimensionalized stream function (p: 

v^ - i2.R* + iR J  ^^^' i^^    ^^ 
A [(x - 5)^ + (y - n)2 + 1]^/^ 

= i2^Re(x, y)  ^2-14) 

2 
in which R =|jawh /S^f = magnetic Reynold's number. 

This equation can be thought of as an equilibrium between the 

applied magnetic field on the right hand side and the induced 

magnetic field and eddy currents on the left hand side.  On the 

left hand side, the first term is associated with the eddy 

currents induced by the externally applied field.  The second and 

third term are related to the induced magnetic field. 

It is instructive at this point to examine equation (2-14) 

further and note different categories of problems which may arise. 

The previous section mentioned the theoretical aspects of the 

local and nonlocal problems.  This section examines their meaning 

in more detail and addresses the implications for solution in each 

of these cases.  Furthermore, a third type of solution, the 

"image" solution, will be introduced.  While the local and 

nonlocal problems have low and medium Reynold's numbers 

respectively, the image solution is for very high Reynold's 

numbers." 
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The first case to be discussed is the local problem.  In this 

case the frequency of the applied field is small, and hence the 

induced magnetic field is weak.  Therefore, the eddy currents can 

be considered as due solely to the applied field acting at the 

point in question.  Hence, the term "local" solution is used. 

This local condition is exploited in the solution process as 

follows.  In the equations, the frequency is included as part of 

the magnetic Reynold's number.  The Reynold's number will be small 

in this case and hence this allows the second and third terms on 

the left hand side of equation (2-14) to be dropped.  The local 

form of the governing equation is then: 

v^^ = i2uRe(x, y) ^ (2-15) 

This is a powerful simplification.  The resulting coefficient 

matrix is then symetric, banded, and requires much less computer 

storage and time for solution. 

In the second case the frequency is in the middle range of 

values.  This solution is generally refered to as the "nonlocal 

solution".  Since the Reynold's mumber is not small, the second 

and third terms must be included.  These latter terms couple the 

eddy currents with the induced magnetic field.  More specifically, 

the second term is tied to the induced field at the point being 

considered while the third term (the integral term) is tied to the 

effect of the induced field from the rest of the plate.  The eddy 

currents influence the induced field as well. 
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The third case involves a relatively high frequency and hence 

a relatively high Reynold's number.  On the left hand side of the 

equation, the second and third terms now dominate.  Physically, 

this means the induced magnetic field is strong and hence one can 

think, of an "image" which creates the opposing field. The image 

would be a reflection of the configuration which sets up the 

externally applied field but would lie on the other side of the 

plate.  The term "image solution" is used to refer to this type of 

situation. 



CHAPTER 3 

FINITE ELEMENT ANALYSIS OF EDDY CURRENTS 
AND TRANSPORT CURRENTS 

The subject of this chapter is the analysis of electric 

currents in thin conducting plates using finite element analysis. 

In particular, the chapter focuses on the extension of the 

existing programs, EDDYl AND EDDY2, to include the ability to 

handle transport currents as well as induced currents. 

As noted in the introduction, the new formulation applies to 

both the one- and two-dimensional programs, EDDYl and EDDY2. The 

actual changes are Implemented only in EDDYl, however. 

3.1 EXISTING PROGRAMS AND MOTIVATION FOR FURTHER DEVELOPMENT 

This section describes the finite element method approach for 

the problem developed in the last chapter and then describes the 

computer programs EDDYl and EDDY2 that were developed based on 

this scheme. 

42 
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3.1.1 FINITE ELEMENT MODELING OF THE STREAM FUNCTION 

The previous chapter developed the integro-differential 

equation (2-14) which governs the flow of eddy currents in thin 

plated subject to time varying magnetic fields.  A stream 

function, l+l, is defined in terms of the current, and the equation 

is obtained in terras of that parameter.  The equation is put in 

steady state form, and the problem then remains to determine the 

distribution of the stream function over the plate.  Finite 

element analysis is used to accomplish this final step in the 

solution process. 

For the one-dimensional case the steady state nondimensional 

governing equation is a simplification of equation (2-14). 

^-^^ + ^^   / S T^^    = iRB(x) (3-1) 

2 
in which I  is the half width of the plate, and R = JJOwh . 

The following finite element models are used to model the 

nondimensional stream function over each element and over the 

entire plate respectively [16]. 

9 r 

in which M^ are the global interpolation functions generated from 

the local element shape functions, N , and 0 are the nodal 
1^ IC 
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values of the nondimensional stream function.  In the second 

expression G is the total number of nodes in the structure. 

Equation (3-1) and the above models are substituted into the 

Galerkin criterion from which the following set of finite element 

equations results: 

J, 'jK *K - ' j, "JK *K '  Vl "j^ *•< ' '"j ■ ' ° """  "-" 

or 

(-[S] - i[P] + i[G]) {(^} = i{R} (3-4) 

in which [S] and [P] are banded, symetric nxn matrices, [Q] is a 

nonsymetric, full nxn matrix, {<p}   is an nxl vector of nodal stream 

function values, and {R} is an nxl vector containing loading 

terms.  The integral expressions for these matrices are: 

S-^ = / x^ 3-^ dx      ; P^^ = R / N, N^ dx jK      /. dx    dx ' jK t    J    K E 

(3-5) 

QjK = lr/¥^)^'(^)^^    •'     R- = R/Nj^Bdx 
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in which the weighting function for the integral term is: 

E     , N^(x) (3-6) 

These matrix equations form the basis of EDDYl.  A similar 

development in two dimensions is used for EDDY2. 

3.1.2 A GENERAL OVERVIEW OF THE PROGRAMS:  EDDYl AND EDDY2 

The computer programs, EDDYl and EDDY2, use the finite 

element approach just described to calculate eddy currents in thin 

plates subjected to time varying magnetic fields. 

In the finite element equations the magnetic field, B, is 

analogous to the load on a plate in structural mechanics.  Hence, 

the B term is frequently refered to as the loading. 

Furthermore, in EDDYl and EDDY2 the source of the applied 

magnetic field can be one of several types.  EDDYl can accomodate 

uniform fields and infinite filaments parallel to the long 

direction of the plate.  Following an improvement made by Hara 

(Ref. 20), EDDY2 is capable of handling uniform magnetic fields, 

line currents, and circular current loops in any orientation as 

sources of the magnetic field. 

Also required as input are the coordinates of several nodes 

in the structure from which the complete set of nodes and their 

locations are generated.  The material properties are specified in 
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a magnetic Reynold's number.  In EDDY2 this Reynold's number is 

2 
defined as R =pawh /8^, where w = the frequency of the applied 

2 
field.  The Reynold's number is defined as R = [J awh in EDDYl 

because of the difference in nondimensionalization.  EDDYl and 

EDDY2 are nondimensionalized with respect to the half thickness 

and thickness respectively. 

A temperature constant is also specified which contains the 

material properties related to thermal behavior such as specific 

heat, conductivity, and density.  This value is used as a direct 

multiplier in the temperature calculation and therefore is 

important for comparing the temperature change of different 

materials under the same loading. 

The programs also have the capability of specifying multiple 

load cases and multiple parameter sets.  The latter option is 

useful in doing parameter studies.  Another valuable feature of 

the programs is their connection to postprocessors which produces 

graphical displays of the results.  This facilitates 

interpretation of the results. 

The programs perform the three different types of solution 

that were discussed in the previous chapter.  These solutions 

(local, nonlocal, and image) are all computed in a single program 

execution.  This allows one to observe the range of Reynold's 

numbers for which certain of these solutions are valid.  Thus, one 

can obtain insight of which frequencies create strong induced 

fields and which do not. 
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As discussed in the introduction, the motivation behind 

modifying the original programs- lies in their inability to solve 

cases in which a transport current exists.  To implement this 

capability it was necessary to alter the programs to admit the 

possibility of non-zero boundary conditions.  In their original 

versions, EDDYl and EDDY2 automatically set the value of the 

stream function to zero on the edges of the plate.  Furthermore, 

the equation for the induced field (2-12) used in the formulation 

assumes zero edge values of the stream function.  The requirements 

for nonzero boundary conditions are discussed in more detail in 

section 3.3. 

3.2 FORMULATION OF THE TRANSPORT CURRENT PROBLEM 

The basic formulation and capabilities of the original 

versions of EDDYl and EDDY2 have been given.  This section will 

now develop the formulation of the same problem in one- and 

two-dimensions, but with the addition of an applied transport 

current.  The detailed development follows very closely that given 

in Chapter 2.  Therefore, the fundamental steps are reviewed, and 

the significant differences in the development are emphasized as 

they occur. 

This section presents the formulation of the problem while a 

full treatment of the differences between this and the original 

formulation is reserved until the following section. 
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The general two-dimensional case is derived first.  This 

formulation is then specialized to the case of a rectangular plate 

and then for the case of an infinite strip. 

3.2.1 THE GENERAL TWO-DIMENSIONAL CASE 

In the following development is for a thin conducting plate 

of arbitrary shape as shown in Figure 3.1(a).  The plate is 

subjected to an applied magnetic field, B , and a transport 

current.  The transport current loading is specified by the 

derivative of the stream function along the plate edge, 1= 

6MJ(S)/6S.  In this expression I is the transport current 

perpendicular to the edge and K\)    is the edge stream function 

distribution in terms of the edge tangent coordinate, s. 

As before, the fundamental equation begins with Faraday's Law 

of Induction.  Furthermore, the stream function is defined in the 

manner of section 2.2.3.1.  The next step is substitution of this 

definition. Ohm's Law, and the applied and induced field 

expressions into Faraday's Law.  Simplifying this for the midplane 

of a plate, results in equation (2-11) as in the previous chapter. 
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z.z 

(a)  Two-Dimensional Plate of Arbitrary Shape 

(b)  Two-Dimensional Rectangular Plate 

Figure 3.1 Two-Dimensional Plate Configurations 
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Up to this point the development has been the same as in 

Chapter 2, and, likewise, the assumptions used in that chapter are 

applicable here.  Now, however, the development departs from the 

previous description.  With nonzero values of the stream function 

required on the edge to apply a transport current, the previous 

formula used for the induced field no longer applies.  However, in 

the following discussion (in which the induced field expression 

with nonzero boundary conditions is derived) one can see the 

direct similarity between the two cases. 

The important diffference between the two cases is the 

existence of "edge terms" in the expression admitting nonzero 

boundary values.  These "edge terms" arise out of the integration 

of the stream function along the plate edge.  Section 3.3.3.1 

addresses the significance of these terms. 

In section 2.2.3.3 the formula for the induced field is taken 

directly from reference 16.  The induced field expression for the 

problem at hand is derived in a concise manner below. 

The Biot-Savart Law is the basis of the B equation for the 

case of both zero and nonzero boundary conditions.  From 

Biot-Savart [24] one has the contribution, dB, to the total field 

at the point in question due to an infintesimal current segment 

dl:     , 
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In this expression r is the perpendicular vector between the 

current segment dl and the point at which dB is being computed. 

The current in the segment dl is i and |J is the magnetic 

permeability of the material inbetween.    ..   i  s,   . 

To obtain the total induced field at the point in question, 

the above expression is integrated over the entire current 

distribution.  For the case of a plate of volume V and current 

distribution I(r'), the integral is: 

I(r') X (r - r') 

B^(r)=A !^   o~  dV 

In this derivation it is important to keep in mind that the 

primed coordinates refer to the current distribution while the 

unprimed coordinates refer to the point at which the field is 

being computed. 

The notation R= r-r' is now introduced.  From vector calculus 

the following identity is applied to the integrand of equation 

(3-9): 

= -I X V Nr ,3     i -^ MR (3-10) 
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Using the definition of the stream function for the current, 

one obtains the equation in its expanded vector form.  For 

substitution in equation (3-7) only the Z component of B is 

necessary which leaves the following expression: 

^z'--) = 4S I 3X' 3X' 
djli 9_ 
3Y'  Y' .^I dV 

(3-11) 

The corresponding derivative in the above expression with 

respect to Z' is now both added and subtracted.  This enables 

equation (3-11) to be rewritten: 

.(■■)= raf/E V-jijJ 
1 34) 

'1 TRT     3Z'  3Z' n dV 
(3-12) 

in which V, is the gradient operator in primed coordinates. 

The second term in the integrand will be zero following the 

assumption of uniform l^Jover the thickness. 

In the next step the remaining term of the integrand is 

expanded and several associated terms are then simultaneously 

added and subtracted.  After regrouping and simplifying back into 

vector form: 

^lir)  = T^ / 4TTh 
ijjV 

1 TRI *^1 W j dV (3-13) 
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Integration by parts is now performed on the second term in 

the integrand.  The singularity involved is overcome using an 

identity containing delta functions given by Jackson [21]. 

The divergence theorem is now applied to the first term to 

transform it from an integral over the volume to an integral over 

the surface area of the plate.  From these two steps the resulting 

expression is: 

B^<^) = ^ ^ ?^ / 5 • E'l dS' (3-14) 

in which S is the total surface area of the plate, and n is the 

unit vector normal to the surface. 

The surface integral is now divided into an integral over the 

top and bottom faces of the plate and an integral over the edge 

surface.  Denoting the surface area of the top or bottom face as 

A, and the edge surface as S, the expression is: 

^lir')-^-^! 4>(X', Y') 

^  "^^ A [(X - X')2 + (Y - Y')^ + (h^/4)] 
3/2 dA' 

!\ 4Trh ^ s y-i w. dS (3-15) 

in which n is the unit vector normal to the edge surface.  One 

can observe that the first two terms in the above expression are 
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identical to equation (2-12).  It is the third tenn that involves 

the transport current effect. 

A further simplification of the expression can be made by 

integrating over Z'.  This step only involves the edge surface 

integral.  The result is a line integral around the edge of the 

plate for the third term.        . ' 

The final step in the development of the governing equation 

for the general two-dimensional problem is differentiation of the 

expression for B with respect to time and substitution into 

equation (3-7).  With C to indicate the line integral in the third 

term, the resulting expression is 

^^  "^^ A [(X - X')^ + (Y - Y')2 + (hV4)]^/^    ^^ 

^ ^^ C [(X - X')^ + (Y - Y')2][(X - X')^ + (Y - Y')2 + (h^/4)]* 

(3-16) 

In the following two sections this equation is modified for 

the case of a rectangular plate and an infinite one-dimensional 

strip. 
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3.2.2 GOVERNING EQUATION FOR A RECTANGULAR PLATE 

The notation for the rectangular plate is shown in Figure 

3.1(b). 

Simplification of equation (3-16) for this case involves the 

last term only.  Based on the geometry the function n takes on 
X 

the value 1 at X=a and -1 at X=-a.  Likewise, n is 1 on Y=b and 
y 

-1 on Y=-b. 

This implies a division of the final term into four separate 

integrals, one on each edge face of the plate. The expression is 

then written as: 

„2,     d^p   .   ayh .  5ij;(X', Y')/9t dA'     _ , Z 

4-  -b( 

^^  "^^ A [(X - X')^ + (Y - Y')^ + (h^/4)]^/2    ^^ 

[31^-,(Y')/3t]  (X - a) 

[(X - a)2 + (Y - Y')2][(X + a)^ + Y - Y')^ + (h^M)]* 

[8>|.3(Y')/3t] (X + a) 
 o r>dY' 

+ ^ 

[(X + a)^ + (Y - Y')2][(X + a)^ + (Y - Y') 

^^  -a l[(X - X')2 + (Y - b)2][(X - X')2 + (Y - b)2 + (h2/4)]* 

[3^4(X')/3t]  (Y + b) 

[(X - x')2 + (Y + b)2][(X - X')^ 
 ? p rJdX' 
+ (Y + b)^ + (hV4)]') 

(3-17) 

in which ^}.   denotes the specified steam function distribution 

along side i. 
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3.2.3 GOVERNING EQUATION FOR A ONE-DIMENSIONAL STRIP 

Figure 3.2 shows the notation used for this problem.  The 

case of an infinite one-dimensional strip assumes that everything 

is constant in one dimension which is taken as the Y direction 

here.  Hence, only a cross-section of the plate need be considered 

since the situation will be the same at any section. 

Edges 2 and 4 on the rectangular plate in Figure 3.1(b) are 

now at an infinite distance away from the section under 

consideration.  Equation (3-17) is now modified by allowing b to 

go to infinity in the last two terms.  These terms go to zero in 

the limit as b goes to infinity.  Physically, this makes sense 

because the influence of these faces will not be felt at the 

current section if they are large distance away. 

Further simplification of the three remaining integral terms 

is possible by integrating over Y' from negative to positive 

infinity.  The final expression is: 

2 a aR° 
^ - ay Tf + j;=- J      "-k ^  dX ' = ah ^q^ 

I     ?   ? ' (h  + (VXT)(tan"'(l/x,) - tan"' x, + (TT/Z)) 

■^      . (X3 + (1/X3)(tan"'(l/X3) - tan"' X3 + (V2)) 

4{X  + a)2 + (h2/4) 

(3-18) 
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Figure 3.2 Infinite One-Dimensional Plate 



in which; 

5S 

1   " u2 
2(X a) + J4(X - a)^ + h^ (3-19) 

,2 = T + 4(X + a) 2(X + a) +44(X + a)^ + h^ (3-20) 

3.3 IMPLEMENTING TRANSPORT CURRENT CAPABILITY IN THE ID CASE 

The necessary formulations for the one- and two-dimensional 

transport current problem have been developed in the last section. 

As noted earlier, the changes required to analyze this problem 

were implemented in the one-dimensional case only.  Therefore, the 

following discussion is in terms of the one-dimensional problem. 

The required changes for the 2D case are an extension of the 

procedure described here. 

Two major changes are required to admit transport currents in 

the programs.  These two modifications correspond to changes in 

the boundary conditions and changes in the differential equation. 

First, to recognize nonzero boundary conditions the original 

finite element equations must be rearranged.  Second, in the 
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differential equation, when a transport current exists, the 

additional terms not found in the original equation must be 

included.  These aspects are treated seperately in sections 3.3.2 

and 3.3.3, respectively. 

Before addressing the modifications above, the formulation of 

the ID problem will be put in the nondimensional terms which are 

used in EDDYl. 

3.3.1 THE NONDIMENSIONAL STEADY STATE FORMULATION OF THE ID 

PROBLEM 

Following the method of Yuan [15], the ID problem is 

nondimensionalized with respect to the plate thickness, h, and put 

in its steady state form using the relationships: 

(3-21) 

in which I is the current in the exciter coil, w is the the 
o ' 

frequency,  Cp is the dimensionless stream function, and C and C 

are the values of Cp at the edges of the plate.  To apply a 

uniform transport current, C and C are given the same absolute 

value and one is then made negative.  In this way a linear 
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distribution of the stream function is specified which represents 

a uniform applied current. 

Introducing these terms into equation (3-17) and substituting 

in the magnetic Reynold's number, one obtains: 

4,,R, .;£|      MOdC ^,B(x) 
:/      '"'MCX- 5)^.1 

iRCJx. + (1/x,)] , . 
'     '    ^     ^'      [tan"'(1/x.)) - tan     x^ + (TT/2)] (3-22) 

(X -  0" +T 

-^J=|—==i— [tan  '(VX-) - tan      X- + (u/Z)] 

in which A and A are in the form of equations (3-19) and (3-20) 

with X and a replaced by their dimensionless counterparts, x 

and I.     With the last two terms (the edge terms) neglected, it is 

this governing equation which is solved by the original version of 

EDDYl. 

3.3.2 CHANGES TO THE FINITE ELEMENT FORMULATION 

The necessary modifications at the finite element level are 

now discussed.  These changes allow the program to solve the 

governing equation with nonzero boundary conditions but with the 

differential equation unchanged.  First, the new form of the 
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finite element equations is explained and then the necessary 

program alterations to implement them are examined.  A third 

subsection discusses the specific problems for EDDYl involved with 

this step. 

3.3.2.1 Changes to the System of Equations 

Let the full set of finite element equations be symbolized 

by: 

[K] {4.} = {P} (3-23) 

There is one equation expressing the condition at each node. 

The equations are partitioned as shown in Figure 3.3. 

Together, Cp and <p     correspond to the value of <J) at all the 

boundary nodes.  The nonzero values of Cj) are specified in the 

input while the program assumes the remaining edge values, Cp to 

be zero. 

Following the outline of Figure 3.3, each subset of equations 

is written out, and then (2) is substituted into (1).  From 

equation (4) in that figure we can generalize the following 

set of equations which is now solved by EDDYl: 

[K,i] 0 

[I] 

~r 
{P^} - [K12] {*2> 

(3-24) 
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K 
11 

^31 

K        K 
12     13 

*^21    *^22   ^ 

KTI    '\'\7 Kr 32   1^33 

CD 

2 f     "    1 ■2 

03 P3 
• k                                                          ^ 

in which: 

(<P^) = Unknown Values (internal nodes) 

(<D ) = Prescribed Nonzero Edge Values 

((D) = Prescribed Zero Edge Values 

The individual rows of the above equations are: 

K(D+K     CD+K     <D=P 
11    1 12     2 13     3 1 (1 ) 

^21^ + ^22^2 ^^23^3 = ^2 

K      CD+K      <D+K      <D=P 
31    1        32^2      "^33 ^3        3 

(2) 

(3) 

Substitution  of   (2) into(1 )   yields: 

K      <D    =  P     - K      CD 
"^11 ^1 1 12    2 

(4) 

Figure 3.3 Modified Solution Procedure 
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3.3.2.2 Changes at the Programs Level 

Abel and Shepard (Ref.22) suggest an efficient algorithm for 

implementing these constraints.  A similar algorithm given by 

Desai and Abel (Ref.23).  The procedure is valuable because it 

preserves the banded nature of the equations.  In the problems 

under consideration, however, the stiffness matrix is fully 

populated.  Therefore, the total advantage of this algorithm 

cannot be realized. 

The constraints are implemented in the programs by simply 

modifying the load vector {P } with the -[K „j{Cp} terms and 

proceeding with the solution as before. 

In their original version, both EDDYl and EDDY2 did not 

determine the matrix [K ].  Therefore, revisions were necessary 

to have the program calculate the terms in this matrix. 

Introducing these revisions was tedious because the stiffness 

matrix is full, complex, and each term is computed as the sum of 

three seperate components.  Furthermore, one of these components 

involves coupling of each node to all nodes of the structure. 

The following is a concise summary of the program changes 

made to implement the new form of the finite element equations: 

a)  input the specified values of (p 

b)  compute the matrix [K „] (local and nonlocal) 
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c) compute the modifying terms:  -[K JiCp } (local and nonlocal) 

d) modify the load vector (local and nonlocal) 

e) print out the boundary conditions 

f) modify the subroutines which compute eddy currents, induced 

temperature, and magnetic pressure so that they use the 

non-zero boundary conditions. . ■, . 

g) place the constrained boundary values of <p    in appropriate 

locations in output of the three stream function salutions 

(local, nonlocal, and image). 

3.3.2.3 Implementing the Changes in EDDYl 

The major obstacle in successfully modifying EDDYl was the 

computation of the matrix [K  ].  As mentioned in the preceding 

section, each term of the stiffness matrix is actually the sum of 

three components.  These terms can observed in equation (3-4). 

Refering to this equation, the P and S terms were relatively 

easily found for [K  ].  The Q terms, however, were more difficult 

to assemble.  This complication occurs primarily because the node 

being considered is coupled to every node in the structure through 

this term. 

In the original version the values in [Q,,] are computed in 

the subroutines ASSEM and CALC.  A modified version of CALC, 

called CALC2, was created to compute the Q values in [Q  ]. 
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To make these modifications to other versions of the 

programs, an attempt was made to keep the changes as modular as 

possible.  Most of the changes, therefore, are made up of several 

subroutines which can be added to another program.  However, 

several fundamental alterations at the internal level were 

necessary also. 

3.3.3 THE INDUCED FIELD EDGE TERMS 

As mentioned earlier, the governing differential equation for 

the problem with a transport current is different than the problem 

without a transport current.  The difference is the existence of 

the "edge terms" in the derivation of section 3.2 for the 

transport current problem.  This section discusses the physical 

significance of these terms first, followed by the method used to 

include them in the program.  This is the second step in 

implementing transport current capability in the programs. 

3.3.3.1 The Significance of the Edge Terms 

In the problem where a transport current is not applied, the 

distribution of the stream function under a uniform magnetic field 

will appear as in Figure 3.4a.  The value of the stream function 

is forced to zero in both the finite element equations and the 

induced field representation. 



<x> 

(a) 
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(b) 

(c) 

Figure 3.4 Stream Function and Corresponding Current Distributions 
in an Infinite One-Dimensional Plate 
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Now, If the finite element equations are modified as in the 

preceding section to admit nonzero boundary conditions, the stream 

function distribution will become changed.  For the case of a pure 

low frequency uniform transport current, the distribution will be 

linear with an abrupt drop to zero at the ends as shown in Figure 

3.4b.  The sharp drop-off to zero at the edges occurs because the 

induced field expression used in equation (3-1), assumescp to be 

zero at the edges. 

The question may now arise as to what problem has been solved 

at this point.  The problem is that of a transport current with 

concentrated currents flowing along the edges in the reverse 

direction.  This current pattern is evident from the stream 

function distribution of Figure 3.4(b) by its sharp gradient at 

the edge of the plate. 

The final step in the development is then to have a 

formulation containing an induced field expression which does not 

assume the stream function to be zero on the edges.  This 

formulation is given in equation (3-22) for the ID case.  The 

difference in employing this formulation versus the original one 

is the inclusion of the "edge terms" previously mentioned.  These 

terms are the last two terms in equation (3-22). 
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The effect of including these edge terms is to cancel out the 

reverse edge currents implied by the stream function distribution 

in Figure 3.4b.  On the edges now, the stream function may remain 

nonzero which results in a distribution as shown in Figure 3.4(c). 

3.3.3.2 Including the Edge Term Effects 

For reasons brought out later on, an approximate method of 

cancelling out the reverse edge currents implied in the original 

program is used in this study rather than a direct application of 

the edge terms to the current program.  This method is judged to 

represent adequately the effect of the edge terms in cancelling 

out the reverse edge currents implied in the present induced field 

expression. 

The method proposed for including edge effects assumes that 

the reverse current sheets actually on the plate edges can be 

approximated by current filaments.  Therefore, to cancel out the 

effect of the reverse edge currents, one simply applies a loading 

of two current filaments at the ends of the plate.  In this 

manner, a magnetic field is set up which represents the field 

given by the edge terms in the complete formulation. 

This method of including the edge effects can be justified by 

showing the equivalence of these two representations.  In other 

words, the formulation containing the full induced field can be 
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shown identical to the formulation with an applied field generated 

by two edge filaments.  For simplicity, consideration is given to 

the case where no other externally applied magnetic fields exist. 

The governing equation (3-17), reduced to the ID case, serves 

as the starting point for the full formulation.  By considering 

2 
h /4 to be small the integration of the edge terms is greatly 

simplified.  After this assumption the governing equation may be 

written: 

iZi a    ^ + ^    )       3iJ;(X')/3t dX' 
a (X-X')^ + (hV4) 

yah ^^'. 3i|) 1    1 
jt (X + a) " 3t (X - a)_ 

(3-25) 

The next step is to nondimensionalize this equation using the 

relationships given in (3-21). Using the same procedure as before 

and considering the case when C_= ~C,, the above equation becomes: 

3 4) 
- iR* + ^ / iR r  'l'(g) dg 

2TT ■I  (x - i)^  +^ 

iRC, 

IT X + «. 
(3-26) 
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In the second case the starting equation is the dimensionless 

formulation used by the original version of EDDYl.  An applied 

field, B , for two edge filaments is substituted into this 

equation.  By superimposing the field due to two individual 

current filaments, the expression for the total applied field is 

obtained.  This equation is in nondimensional form: 

Bj(x) ui 
2TTh 

1 ,1   1 
(x + i)      (x - i) (3-27) 

where i is the current in the edge filaments. 

Using the definition of the stream function the current i is 

now written in terms of ip.  The appropriate expression for the 

distribution of the magnetic field is then: 

B(x)=2^ 1    ,   1 
(X + l) (X - £) (3-28) 

Substitution of this form of the applied field into equation 

(3-22) without the edge terms yields: 

3x2       2^ [  (^ - 0^ + } 

iRC, 

"27^ 
T  +  T 

X + 2,   X - £ (3-29) 
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Equations (3-26) and (3-29) are identical.  Thus, we have 

shown when h'is small that the formulation solved by EDDYl in this 

manner is identical to the exact formulation containing the full 

expression for the induced field. 
) 

This technique for including the edge effects is further 

justified when one considers how these effects differ between the 

local and nonlocal problem.  For simplicity here a pure transport 

current case is considered.  In the local problem the frequency is 

small, and hence the time rate of change of the total magnetic 

field will be small also.  Hence, the induced currents given by 

Faraday's Law will be negligible and the resultant current 

distribution will be unchanged from that of the applied current. 

On the other hand, for the nonlocal problem the frequency is 

high which causes significant induced currents.  As a result the 

applied current distribution will be changed to achieve an 

equillibrium between the magnetic fields. 

This comparison of the local and nonlocal cases implies that 

the edge terms will have no effect on the solution of the problem 

at hand for low frequencies.  Therefore, it is of no use to 

implement these terms into the programs for the local case.  The 

influence of the edge terms will be felt, however, in the nonlocal 

case. 
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These observations can be clearly seen in the output from 

EDDYl as shown in Figure 3.5.  This figure shows the current 

distributions computed by EDDYl for a pure transport current at 

several frequencies.  The Reynold's number is used to express the 

relative frequency of the various cases.  The results here are 

based on the method of accounting for the edge effects described 

previously. 

One can see from Figure 3.5 that the influence of the induced 

field in not really felt for Reynold's numbers less than unity. 

Furthermore, Figure 3.6 compares the solution with and without the 

edge term effects for a Reynold's number of five.  Even for this 

large Reynold's number the maximum difference in the two solutions 

is only five per cent. 

In an actual plate problem, the concept of skin depth is 

useful in determining wether the induced field has a significant 

effect.  The skin depth, 6 , is defined as the depth to which an 

oscillating magnetic field can penetrate a conductor and is given 

by [18]: 

5 = 
f 2 1* 
]iaui 

^ = h(|)* - <3-30) 

in which R is given in equation (3.1) for the one-dimensional 

plate, and h is the plate thickness. 



c < 

CD 

O 

o 
^- 
QO   _ 

- 

o 
00   „ 

o 
o 
00 

o 
oo -H 

o 
CD ^ 

R =  5.0 

X 
\, 

-0.04-0.03-0.02-0.01   0.00    0.01     0.02    0.03    0.04 
Plate  Width,   m 

Figure 3.5 Comparison of Current Distribution for Different Reynold's Numbers, 
computed by EDDYl. 



o - 
^ - 
00    _ 

n 

1   1   1   1   1 

C 

O    " 
o - 
00  _ 

(D 

o 
o 
00 

o 
CD — 

with edge correction terms 

without edge correction 
terms 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ' 

-0.04-0.03-0.02-0.01   0.00    0.01     0.02    0.03    0.04 
Plate  Width,   m 

Figure 3.6  Comparison of EDDYl Pure Transport Current 
Solution with and without Edge Correction Terms, R = 5.0 

•si 



75 

Equation (3-30) can be used to compute the ratio of skin 

depth to plate thickness for a problem with a particular Reynold's 

number.  Problems in which the ratio of skin depth to plate 

thickness is less than about 0.5 should not be analyzed by EDDYl 

because in these cases the magnetic field does not penetrate the 

full plate thickness as assumed in the program.  For R = 5.0 the 

ratio of skin depth to plate thickness is 0.65.  Therefore, the 

Reynold's number of five considered in Figure 3.5 is a good upper 

limit on the range of R's which can be treated with EDDYl. 

As an example of a physical situation, the electromagnetic 

blunting problem studied in Chapter 4 is considered.  For the case 

of the stainless steel strips the skin depth is calculated to be 

11.7 mm and in the case of the titanium it is 18 mm.  The 

thickness of the stainless steel strips is 0.965 mm while the 

titanium strips are 1.4 mm thick.  Therefore, the induced field in 

both cases will be felt through the entire depth. 

The magnetic Reynold's number can be calculated using the 

appropriate specimen thickness in each case.  In both the 

stainless steel and titanium tests the Reynold's number is 

approximately 0.3.  Hence, for the electromagnetic blunting 

problem, the induced field does not appear to have a significant 

influence.  Based on these calculations then, neglecting the edge 

terms is of no consequence in the analysis of these problems in 

one-dimension. 
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To summarize, implementation of the full expression for B 

does not appear warranted in light of the preceding discussion. 

The edge terms are shown to be of consequence only in the nonlocal 

case and to have a maximum influence of only about five percent. 

Nevertheless, it is recommended that later studies explore 

situations where the edge effects are significant (e.g., the 2D 

case) and include them in computer programs for such cases. 

3.4 VERIFICATION OF TRANSPORT CURRENT CAPABILITY IN EDDYl 

The main focus of this section is a series of tests done to 

verify the accuracy of EDDYl.  Before the description of these 

checks, several related changes made to EDDYl are briefly 

described.  While these changes are worthy of mention, they are 

not major modifications such as those described in section 3.3. 

3.4.1 RELATED CHANGES TO EDDYl 

The output of the revised program shows the boundary 

conditions and indicates whether a pure transport current case 

exists.  In addition, the real and imaginary [K ] matrices and 

the modified load vector for both the nonlocal and local solutions 

are printed. 
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Changes were also made to the results section.  In summary, 

these are: 

1. The local solution is indicated as purely imaginary rather 

than real as before.  From equation (3-4) one can see the 

local solution must be imaginary.  The local form of this 

equation is obtained by dropping the second and third terms on 

the right hand side.  This results in the following equation 

for the local problem: 

-[S] {*} = i{R} (3-31) 

To satisfy this equation the values of the stream function 

must be negative and imaginary. 

2. In the stream function and eddy current solutions the sign of 

the "modulus" was changed to be concurrent with the sign of 

the imaginary part.  The solutions' orientation is generally 

dominated by the imaginary component and hence, the sign of 

these values was changed to more clearly express this bias. 

In each heading, "modulus" was changed to read "resultant" to 

better describe the meaning of this value. 

3. Measurement of the phase angle is now from the standard 

excitation which is negative and purely imaginary.  This 

characteristic of the excitation is evident in the right hand 

side of equation (3-4) after multiplying thru by -1. 
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4.  The output now contains text which defines "resultant" and 

indicates the standard excitation is negative and imaginary. 

3.4.2 DESCRIPTION OF THE CHECKS 

Verification of the program was approached in three ways. 

First, the solution and new parts of the "stiffness" matrix were 

compared with hand calculated values for a three-element problem. 

Second, a "verification grid" was used to check the results from a 

series of problems against the expected response.  Finally, for a 

DC transport current situation, the induced magnetic field was 

detennined three ways:  by experiment, from the program, and from 

an analytical expression. The distribution of B from each of the 

three methods was then compared.  This last check applied only to 

the local solution.  These three aspects are described in the 

following three subsections. 

3.4.2.1 Comparision with Hand Calculation 

The matrix terminology used below follows that of equation 

(3-3).  The S and P components of the [K „] matrix for a 

three-element problem were calculated by hand.  The matrices 

computed by the program were found to agree with these values 

exactly.  To confirm the placement of the Q terms into their 

correct location in [K,„], the S and P components were added to 

the program's [Q,,] matrix.  As expected, the resulting matrix was 

found to agree with [K.„] of the program.  This was also checked 
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in the ten-element problem.  These checks are valid for all ranges 

of Reynold's numbers (i.e., for local and nonlocal problems). 

In addition, the local stream function solution was computed 

by hand and found to match the program solution. 

3.4.2.2 Verification Grid 

A series of checks outlined in Figure 3.7 was run for both 

three- and ten-element problems.  These checks revealed several 

errors which were corrected.  The final version was made to 

satisfy all these checks. 

Shown in horizontal rows in this figure are the three stages 

of the program which were examined.  At the first level, the local 

solution was checked using a low Reynold's number.  For this case 

the local and nonlocal solutions should be identical;  hence, in 

the second row of verifications the nonlocal solution was checked 

for agreement with the local solution for low R.  The third level 

examined in the program was the nonlocal solution for high 

Reynold's number. 

At each of these three steps in the verification, the 

following four individual cases were run: 

(a) the original program 

(b) the new program with zero boundary conditions for the stream 

function, i.e., the induced current case 
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(c) the new program with constant, equal values of the stream 

function on the boundary, i.e., another version of the induced 

current case 

(d) the pure transport current case, i.e., equal magnitude but 

opposite sign boundary conditions on opposite edges of the 

plate 

Each of these problems corresponds to a column in Figure 3.7. 

Considering verification in the horizontal direction, the results 

using zero boundary conditions were found to agree exactly with 

those of the original program.  Furthermore, the results from the 

constant boundary values case were found to equal the original 

program's results with the constant superimposed.  Finally, the 

stream function in the pure transport current case was checked. 

To do this a uniform transport current was applied by specifying 

C = -C .  In the local problem, the analytical solution is 

relatively simple, and, therefore, the results were easily shown 

to be correct.  For this case the current solution is same as the 

applied current which is I=(C -C )/21.  In the high R case the 

stream function distribution was found to be symmetric as expected 

due to the symmetry of the problem.  All these points were 

satisfied with the new program. 
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3.4.2.3 Comparison of the Induced Field . 

The component of the induced field perpendicular to the plate 

was determined at the surface of the plate in three different 

ways.  First, an analytic expression for B was developed by 

superpostion.  The magnetic field between two current filaments 

was found analytically and then used to cancel out the reverse 

edge currents implied in the one dimensional version of equation 

(2-12).  The condition associated with the latter equation is that 

of Figure 3.4(b).  Second, based on a local solution with EDDYl, 

the B distribution was computed from the currents over the width 

of the plate using a current filament approximation.  The current 

in each element, computed by the program, was treated as a 

concentrated filament at the centroid of the element.  At each 

point on the surface of the plate, the contributions computed from 

the Biot-Savart Law of all the current filaments were 

superimposed.  For both of the techniques just described, a small 

computer program was written to perform the repetitive 

calculations.  The third case involved experimental measurement. 

A DC current was applied along a flat strip, and the actual 

induced field was measured along a transverse of the strip using a 

gaussmeter. 

These three methods were used to compute the B for three 

levels of current, 25, 50, and 75 amperes.  Excellent agreement 

was found for all three cases as shown in Figures 3.8, 3.9, and 
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3.10.  The distributions computed by the analytical method and 

from EDDYl are so close that they are shown by the same curve in 

these figures. 

Also included in these figures is the induced field 

calculated analytically without correcting for the reverse edge 

currents.  This provides another insight on the influence of these 

edge terms.  The expression used here is equation (2-12) which was 

originally proposed in Reference 19.  In Figures 3.8, 3.9, and 

3.10 this curve is refered to as the "uncorrected analytical" 

solution to indicate that the reverse edge currents have not been 

cancelled out.  From these curves one can see that the edge 

currents have a substantial effect on the induced magnetic field 

near the edge of the plate.  This observation for the induced 

field is a paradox to the corresponding observation made in 

Section 3.3.3.2 and Figure 3.6 which indicates that the edge 

current effect on the current distribution is insignificant.  To 

summarize, the reverse edge currents appear to have considerable 

influence on the induced magnetic field in the plate but have only 

a minor effect on the resulting current distribution. 
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CHAPTER 4 

ELECTROMAGNETIC CRACK-TIP BLUNTING 

The subject of this chapter is the blunting of fatigue cracks 

by electromagnetic effects.  Use of the term "blunting" here 

indicates the formation of a hole by melting at the tip of the 

crack.  The hole tends to causes a redistribution of stress which 

decreases the large stresses at the crack tip.  From a 

mathematical standpoint, this alleviates the stress singularity at 

the crack tip provided the hole is smooth. 

Much of the following discussion recounts the experimental 

work done in this study.  The first section describes the various 

apparatus and procedures used in the different phases of 

experimentation.  An individual section is then devoted to the 

results for each of the two materials used:  stainless steel 304 

and titanium alloy Ti-6A1-4V.  A final section in this chapter 

presents a discussion of the experimental results.  The succeeding 

chapter considers analytical studies of the tested configurations. 

87 
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4.1 BASIC TESTING APPARATUS AND PROCEDURE 

The equipment and procedure for three general phases of the 

experiments are described here.  First, the process used to 

generate specimens with fatigue cracks is outlined.  Second, the 

technique of producing holes at crack tips using electromagnetics 

is described.  This section is followed by a description of the 

methods used to analyze the blunted samples.  A fourth section 

reports on the work done to study the effects of heating on the 

metals. 

4.1.1 FATIGUE CRACK GENERATION 

In the fatigue cracking procedure an MTS hydraulic loading 

system is used to place a cyclic load on the specimens.  Before 

being placed into the fatigue apparatus, each specimen is machined 

to a standard geometry for that material.  These standard specimen 

geometries are shown in Figure 4.1 for both stainless steel and 

titanium. 

To cause the crack to initiate at the center of each 

specimen, a two millimeter slot is cut into the side of each 

specimen as shown in Figure 4.1 to concentrate the stress at the 

desired cross section.  Furthermore, to create a specific point at 

which the crack is to begin, a notch is placed at the end of each 

slot with a razor blade. 
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A cyclic loading frequency of twenty Hertz is used in all 

cases.  For each metal some preliminary experimentation is 

performed to determine the range of load which produces a crack in 

a reasonable amount of time.  For titanium alloy with a six 

millimeter crack the load limits are 750 and 1750 pounds for the 

duration.  However, the limits for the stainless steel are set at 

200 and 800 pounds initially, and then lowered to 100 and 700 

pounds after the crack begins.  This is done to slow the rate at 

which the crack propagates. 

To insure that the total crack length and remaining uncracked 

material are the same in all of the specimens, a score line is 

placed exactly six millimeters from' the notched edge on each 

specimen.  During the cyclic loading process the crack is 

carefully observed under a microscope and stopped once the score 

line is reached. 

In the case of the stainless steel the ductility of the metal 

allows the crack to be seen easily under the microscope once the 

cyclic loading is stopped.  The titanium crack, on the other hand, 

is relatively difficult to discern because of the material's 

brittle nature.  To monitor the crack accurately in the titanium 

it is necessary to halt the cyclic load and apply a static load 

sufficient to open the crack to its full length. 
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4.1.2 THE ELECTROMAGNETIC BLUNTING OPERATION 

The bluntiag operation consists of creating a hole at the tip 

of a crack to decrease the concentration of stress at that point. 

Figure 4.2 depicts the basic apparatus for the procedure described 

below.  The hole is produced by attaching the ends of a specimen 

to a 20kJ capacitance storage bank.  By passing a current pulse 

through the specimen, current is concentrated at the crack tip. 

When the current density is sufficient, melting occurs as a result 

of Joule heating.  For a particular specimen the amount of melting 

depends on the size of the current pulse.  A hole is formed 

because the magnetohydrodynamic forces act on the molten metal to 

force it out of the crack-tip region.  Figure 1.1 shoes a typical 

hole that results in stainless steel. 

Different hole shapes result, depending on the material type 

and the degree to which the fatigue crack provides infinite 

resistance.  In other words, the surfaces of the crack can be 

close enough in some caes so that the current can jump across the 

gap.  The result is incomplete hole formation and melting along 

the crack.  This effect is especially evident in titanium.  The 

brittle nature of this metal results in very tight cracks because 

little permanent deformation occurs during the cracking procedure. 
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To overcome these difficulties associated with titanium, the 

specimen is placed in tension during the current pulse.  As shown 

in Figure 4.2, a loading machine is set up in conduction with the 

capacitance bank to do this.  By placing the specimens under load, 

the fatigue crack is opened sufficiently to prevent the current 

from jumping across it. 

The special grips shown in Figure 4.2 are designed to permit 

application of the charge to the specimen in the loading machine. 

Also, insulation of the loading machine is required to prevent the 

current from travelling through it rather than through the 

specimen. 

To measure the size of the current pulse, a Rogow.ski coil is 

placed around one of the capacitance bank leads, and its signal is 

monitored on an oscilliscope.  Photographs were taken of the 

resulting scope images of voltage versus time.  By integrating 

this signal over time one obtains the "size" of the current pulse 

in terms of total amperage. 

4.1.3 THE ANALYSIS OF BLUNTED SAMPLES 

After the specimen has been blunted, careful measurements are 

taken of the hole length, hole width, and remaining strip width. 

As shown in Figure 4.3(a), the hole width, 2r, is taken as the 

dimension in the longitudinal direction of the strip.  The other 

dimension is the hole length, I   ,  which is measured in the 
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transverse strip direction.  For most specimens the hole length is 

the longer of the two dimensions.  In addition, the width of the 

remaining material is measured to calculate the ultimate stress on 

the net section.  These measurements are made on both faces of the 

specimen and then averaged to obtain a value over the thickness. 

The hole dimensions data are now used to calculate two 

quantities useful in comparing results.  First, a value of 

effective crack-tip radius, r, is defined as half of the hole 

width (measured parallel to the long direction of the specimen). 

This parameter is determined directly from the hole dimensions. 

It provides a useful measure of relative hole size and a measure 

of the curvature in the melted hole.  The effective crack-tip 

radius is used to present nearly all of the experimental results 

in this chapter. 

A second quantity used in comparing results is the equivalent 

circular hole diameter which is based on the melted area of the 

specimen.  This value is computed as a measure of total melted 

area and is defined as the diameter of a circular hole which would 

have a melted area equal to that of the actual specimen.  The area 

of the melted regions can be approximated as the area of a known 

shape or the combination of several known shapes.  It was found 

that four configurations can be used to cover essentially all of 

the melted geometries that arise.  These shapes are a circle, an 

ellipse, a circle-triangle combination, and a circle-rectangle 

combination.  The last three configurations are shown in Figure 



4.3(b).  Formulas for the equivalent circular diameter were 

developed by equating one of these areas to the area of a circle 

and solving for its diameter.  The equivalent circular hole 

diameter is used only to present hole size as a function of 

current in Figure 4.5. 

In some cases photographs are also taken as a record of the 

blunted geometry. A typical photograph showing a magnified view 

of a blunted stainless steel sample is given in Figure 1.1. 

The final step is the testing of the strips for ultimate 

strength.  A 10,000 pound United testing machine was used to pull 

the specimens directly to failure and to record the maximum load 

attained. 

4.1.4 STUDIES ON THE EFFECT OF HEATING 

Blunting has the benefit of reducing the degree of stress 

concentration at a crack tip.  However, in this process the 

possibility of undesirably affecting the material properties by 

heating also exists.  Therefore, the effect of the melting on the 

region surrounding the hole is studied to supplement the 

experimental work. 

This problem is addressed in two ways in this study.  First, 

a group of stainless steel specimens is blunted by drilling holes 

rather than melting them.  The results of the ultimate strength 

tests on these are presented in section 4.2.2.  The second 
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approach to this problem is to analyze the grain structure in the 

melted regions.  This study is preliminary rather than a full 

metallurgical treatment of this problem.  A more detailed 

examination of the effects of heating on titainium and stainless 

steel as it pertains to this problem is recommended. 

To study this problem from a metallurgical viewpoint, a 

series of specimens, both titanium and stainless steel, are 

obtained in the heated (blunted) and unheated (unblunted) 

conditions.  The next step is to mount the critical area of each 

specimen into a disk to allow ease in handling.  Following 

standard metallurgical procedures, these mounted specimens are 

polished using a series of grits which become progressively finer 

in size.  The specimens are polished to a final grit size of 0.05 

microns.  Some specimens are then etched with Kroll's reagent [33] 

to make the grains more distinct.  At this stage the mounted 

specimens are examined under a microscope and photomicrographs are 

taken to record the various grain structures. 

4.2 STAINLESS STEEL 304 

This section presents the results of tests done on stainless 

steel 304 specimens.  Figure 4.1(a) shows the geometry of the 

stainless steel specimens, all of which are of a thickness 

0.965mm.  One side of the strips is milled down 4.7 mm to create a 

higher current density in this section while maintaining 
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sufficient material at the ends to attach the leads of the 

capacitance bank. 

Since fatigued samples are time consuming to obtain and 

limited in quantity, a preliminary group of specimens containing 

only razor notches is useful at the outset to develop a reliable 

blunting procedure.  In these specimens, melted holes from the 

electromagnetic blunting procedure are observed at the end of the 

razor notches.  It should be noted that a slightly different 

geometry is used for these tests than that given in Figure 4.1(a). 

The width of the milled section is 13.8 mm as opposed to 14.3 mm. 

Three sets of stainless steel specimens are tested to 

ultimate strength.  The first series of strips contain fatigue 

cracks which are blunted electromagnetically.  A second group is 

blunted by drilling a hole rather than melting, to provide a basis 

for comparison of the heating effect.  In this set holes are 

drilled at the tip of the razor notches for the uncracked 

specimens and and 'at the tip of the fatigue cracks in the cracked 

specimens.  Finally, a third group is blunted electromagnetically 

in the presence of either an external magnetic field or a stream 

of nitrogen gas for cooling.  These specimens are tested to 

observe the influence of a magnetic field or a cooling jet on the 

formation of a blunting hole. 
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The results of testing done in fatigue cracked specimens, 

drilled hole specimens, and special effect specimens are presented 

in the following three sections.  A fourth section expresses the 

important points gleaned from the tests on stainless steel. 

4.2.1 FATIGUE CRACKED SPECIMENS 

Figures 4.4, 4.5, 4.6, and 4.7 present the results of 

experiments done on stainless steel specimens containing fatigue 

cracks.  The first figure shows the effective crack-tip radius 

plotted versus applied current.  By performing a linear regression 

analysis on the logarithms of this data, one obtains the 

logarithmic curve shown in Figure 4.4.  The high degree of scatter 

in this relationship is indicated by the low correlation 

coefficient of 0.65. 

Linear regression of logarithms is used again to express the 

relationship between the equivalent circular diameter and current 

in Figure 4.5. As previously mentioned, the equivalent circular 

diameter is based on the melted area of the specimen and hence is 

a better measure of the total amount of melting than the effective 

crack-tip radius. This data also exhibit large scatter and has a 

correlation coefficient of 0.65. 
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In Figures 4.6 and 4.7 the ultimate stress is given as a 

function of the applied current and effective crack-tip radius 

respectively.  Ultimate stress is computed by dividing the 

specimen's maximum load resistance by the remaining cross 

sectional area (net section). Direct linear regression is used to 

determine the mathematical relationship between these quantities. 

Considerable scatter is apparent in the applied current data. 

However, greater consistency is shown in the data of ultimate 

stress versus crack radius.  The correlation coefficients are 0.61 

and 0.89, respectively. 

In addition, a 95% confidence interval is established for the 

last two graphs using the procedure of reference 25.  These limits 

indicate that for a given current or crack radius, the ultimate 

stress of 95 out of every 100 specimens will lie in this range. 

Figures 4.6 and 4.7 show these confidence limits. 

4.2.2 DRILLED HOLE SPECIMENS 

As indicated earlier, this study recognizes that heating of 

the metal during electromagnetic blunting can have a significant 

effect on the properties of the material.  With respect to the 

fracture resistance or ultimate strength of the material, this 

effect could be a positive or negative influence. 

To examine the effects of electromagnetic heating on the 

remaining metal, a group of specimens are blunted by drilling a 
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hole as opposed to melting one.  Both razor notched and fatigue 

cracked specimens are used with the hole being drilled at the tip 

in each case.  The strips are then tested to failure load as 

before, and the ultimate stress on the net section is computed. 

In Figure 4.8 the ultimate stress of the razor notched samples is 

plotted versus hole diameter.  The same graph for the fatigue 

cracked strips is given in Figure 4.9.  Both of these figures 

indicate an increase in strength as the size of the hole used for 

blunting becomes larger. 

Comparison of Figures 4.7 and 4.9 shows the relationships to 

be almost identical.  Based on linear regression analysis of each 

set of data, the slope of the two curves is found to differ by 

only five percent.  Furthermore, the disparity between 

y-intercepts is less than one half of one percent.  The similarity 

between these two curves supports the notion that electromagnetic 

heating of the metal has very little or no influence on the static 

strength of the specimens.  While the data seem to indicate no 

significant effect at present, a more thorough study of this area 

is recommended.  Such a study should include a full metallurgical 

examination of the melted zone as previously mentioned. 

4.2.3 SPECIAL EFFECTS 

In addition to the main sequence of tests, several specimens 

are also tested to observe the influence of cooling and of a 

magnetic field during the blunting process.  Results from 

experiments in these two areas are presented individually in the 
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two following two subsections.  Figure 4.10 shows the data from 

these special tests superimposed on the curve from Figure 4.4 for 

reference. 

4.2.3.1 External Magnetic Field 

This group of tests is performed to investigate the effect of 

an external magnetic field on the displacement of the molten 

metal.  Four specimens were exposed to a 7500 gauss magnetic field 

during application of the current pulse.  The magnetic field is 

positioned perpendicular to each sample, and after two tests the 

direction of the field is completely reversed for the remaining 

two.  Figure 4.10 indicates the direction of the applied magnetic 

field in each case.  These two orientations are refered to as 

"direction 1" and "direction 2". 

Results from these experiments are indicated in Figure 4.10. 

The magnetic field has a significant effect on the hole diameter. 

For these quantities the direction of the magnetic field is 

especially important.  In the case of direction 1 the effective 

crack-tip radius is decreased about 40 percent as shown in Figure 

4.10.  The same quantity is increased about 80 percent by 

application of the magnetic field in direction 2. 

On the other hand, the ultimate stress appears to be 

influenced by the magnetic field only in terms of the size of the 

hole produced.  Testing of these strips for ultimate stress yields 

data which fall well within the 95 percent confidence limits of 

Figures 4.6 and 4.7. 
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4.2.3.2 Nitrogen Gas Cooling 

To observe the effect of cooling during the blunting process, 

a stream of nitrogen gas is directed along the crack.  Two strips 

are tested with the gas jet running into the crack opening (down 

the crack) and one strip was tested with the jet focused on the 

uncracked edge (up the crack).  The stream of gas had a 

predictable influence on the shape of the melted zone.  Flow up 

the crack tends to elongate the hole and make it narrower, whereas 

the flow down the crack makes the hole rounded and squat and 

pushes it farther into the strip.  In the data, the only noticable 

effect of the gas jet is in the diameter of the hole.  Figure 4.10 

shows about a 60 percent reduction in effective crack-tip radius 

for flow up the crack and a 15 percent reduction for flow down the 

crack.  The ultimate load data on these samples fit well with the 

previous tests. 

4.2.4 DISCUSSION OF STAINLESS STEEL 304 TEST RESULTS 

This section summarizes the results of the tests done on 

stainless steel 304.  Furthermore, it describes the rational used 

in selecting titanium as the next material to be studied. 

In this study, some variability appears in the overall 

results of the blunting process.  Wide scatter is considered to be 

typical in fatigue data.  The relationships involving ultimate 

stress seem to show very little scatter while those entailing 

current or voltage show considerable variance. 
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, For the fatigue cracked specimens one can see from Figure 4.7 

that the greatest increase in strength realized is 19 percerit. 

The razor notch specimens are found to exhibit similar behavior to 

that of the fatigue cracked specimens.  This makes them valuable 

substitutes for the fatigued samples which are more difficult to 

obtain.  However, the razor notches have their own significance 

for simulating stress risers in actual structures as well. 

For the experiments with stainless steel, some of the 

conclusions regarding the drilled hole, magnetic field, and 

nitrogen cooled specimens have already been pointed out in the 

preceding discussion.  These are summarized below. 

Based on a comparison of drilled hole and melted hole results 

in section 4.2.2, the electromagnetic heating appears to have no 

appreciable effect on the ultimate strength.  Also, section 4.2.3 

points out that a magnetic field or a cooling jet affect the size 

of the hole and consequently the ultimate stress.  However, these 

special effects have no effect on the ultimate strength 

independent of hole size. 

The gain in load carrying capacity of the stainless steel 

strips suggests that even larger increases may be exhibited by 

other materials.  In particular, a material for which the plastic 

zone around the crack tip is small is of interest because the 

electromagnetic blunting process may actually eliminate the 

plastic zone.  If the area of plastification is smaller than the 

melted hole, then all of the yielded material would be removed 

from the specimen by blunting. 
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The concept of a small plastic zone can be examined further 

by considering the formulas available for computing plastic zone 

size.  These expressions are of the general form: 

p = n 

^"y 

(4-1) 

in which p is the plastic zone size, K is the stress intensity 

factor, O is the yield strength of the material, and n is a 

constant. Various values of n have been proposed by different 

researchers.  Hahn and Rosenfield [30] suggest that n be taken as 

The accuracy of p as a true measure of the plastic zone size 

is questionable.  Many factors such as work, hardening and large 

strain effects are not included in these simple models [13]. 

Calculation of the plastic zone size is considered again in 

Section 5.3.1 where it is used to distinguish between large and 

small-scale yielding. 

For this part of the study, Equation (4-1) is valuable for 

comparing the yielding behavior in different materials. 

Specifically it can be used to predict the type of material in 

which the plastification is small in the vicinity of the crack 

tip.  Figure 4.11 shows this relationship plotted for a range of 

plastic zone sizes.  One can easily see that the yielded region 

will be small in a situation involving a high yield strength and a 

low stress intensity factor. 
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Clearly, to obtain a small plastic zone, a material with a 

high yield strength is desirable.  However, a similar 

generalization is not so straightforward in the case of the stress 

intensity factor.  The reason is the stress intensity factor is 

not soley a material property in the case of the test specimens. 

Nevertheless, for the purposes of drawing conclusions, the 

critical stress intensity factor may be used for K in equation 

(4-1).  A more detailed discussion of critical stress intensity 

factors as they apply to the test strips is presented in Sections 

2.1.3 and 5.3.  To summarize, a material with a high yield 

strength and a low critical stress intensity factor is desired for 

the zone of yielding to be small in the vicinity of the crack tip. 

The type of properties of interest here are exhibited by 

brittle materials.  In metals of this type, little yielding occurs 

prior to material separation because the yield stress is very near 

to the ultimate stress. 

With these ideas in mind the titanium alloy Ti-6A1-4V is 

chosen.  This metal has an ultimate stress of 895 MPa and a yield 

stress of 825 MPa [19].  The corresponding values for stainless 

steel are 550 MPa and 310 MPa [19], respectively.  The titanium 

has a 63 percent higher ratio of yield to ultimate stress. 

The next section reports on the tests done on Ti-6A1-4V. 
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4.3 TITANIUM ALLOY (Ti-6A1-4V) SPECIMENS 

The results of testing done on Ti-6A1-4V is the topic of this 

section.  Unlike the stainless steel speciments, the titanium 

specimens are not milled down on one side.  Figure 4.1(b) shows 

the geometry used.  The thickness of the material is 1.4 mm. 

Three series of titanium specimens are blunted.  First, a 

pair of razor notched samples without cracks are blunted.  Next, 

several strips containing fatigue cracks are put through the 

process unloaded.  These specimens show that, when the crack is 

not sufficiently open, holes occur along the crack rather than at 

the tip.  This is caused by the current jumping across the crack 

in certain places.  A third series of specimens are then blunted 

while under load to open the crack to avoid the problem of 

incomplete hole formation.  This problem is especially evident in 

brittle materials such as titanium because the small amount of 

plastic deformation causes the crack to be tight when unloaded. 

Figure 4.1(b) does not show the holes used to attach the 

capacitance bank leads at the ends of the unloaded samples.  Such 

holes are not required in the case of the loaded strips because 

different grips are used in this situation. 

Only two razor notched specimens of titanium are blunted. 

The purpose of these is to provide an introduction to the effect 

of the electromagnetic process on the titanium alloy. A 5 kV 
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charge is applied to both these samples.  The ultimate stress of 

these two specimens is fifty percent greater than the ultimate 

stress of the two unblunted specimens which are tested. 

Experimentation continued with the fatigue cracked strips blunted 

while unloaded and then with the cracked strips blunted while 

loaded.  Individual attention is given to each of these two 

groups. 

4.3.1 UNLOADED FATIGUE CRACKED SPECIMENS 

Using the same procedure as used for stainless steel, a group 

of unloaded titanium specimens containing fatigue cracks are 

blunted.  The melted area in these tests suggests that better 

holes might be obtained by placing the strips in tension. 

Results from this series are presented in Figures 4.12, 4.13, 

and 4.14.  In the first of these figures, the effective crack-tip 

radius is plotted versus current.  A linear regression analysis of 

this data is shown by the solid line in this figure which has a 

correlation coeffecient of 0.91. 

Figure 4.13 expresses the relationship between ultimate 

stress on the net section and the applied current.  The 

variability of these results is evident in this figure and in the 

low correlation coefficient of 0.50 for the linear regression 

curve. 
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Lastly, in Figure 4.14 the ultimate stress on the net section 

is plotted as a function of crack radius.  The linear regression 

curve has a correlation coeffecient of 0.78 which shows that some 

scatter is apparent in the data.  The largest increase in strength 

exhibited by any one of these samples is over 70 percent. 

Collecting a large number of accurate data points was 

difficult with this group of specimens because of the incomplete 

hole formation problem described in section 4.1.2.  In many cases 

the melting occurred along the crack rather than at the crack tip 

which made the samples unusable.  However, by opening the crack 

under tensile load the melting was forced to occur at the tip. 

The next section presents the data compiled using this technique. 

4.3.2 TENSILE LOADED FATIGUE CRACKED SPECIMENS 

As mentioned at the end of the last section, the blunting 

procedure developed here is a direct result of the difficulties 

experienced with the last set of titanium samples.  Application of 

the current pulse to a sample in the loading machine requires 

special grips to be designed and manufactured.  Insulation of the 

loading machine is also required. 

Two approaches are taken with this group of specimens.  In 

the first case the size of the current pulse is held constant 

while the applied load on the specimen is varied.  By examining 

the holes from this set of tests, a value of applied load Is found 
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which consistently forces the hole to occur at the crack tip.  The 

value selected is 700 pounds.  With the load fixed at this value, 

a second set of results is obtained over a range of applied 

voltages.  The outcome of the first series of tests is depicted in 

Figures 4.15, 4.16, and 4.17.  Each figure contains a solid line 

representing the results of a linear regression analysis for that 

data. 

In Figure 4.15 the effective crack-tip radius is plotted as a 

function of applied load.  The correlation coefficient is 0.86 

which indicates a reasonable degree of consistency in this 

relationship.  To produce a significant blunting effect a minimum 

hole size is necessary.  Hence, one can see from Figure 4.15 that 

an applied load of at least 700 pounds is required to create a 

reasonably sized hole of radius 0.3 mm.  A value of 700 lb is also 

suggested by general visual comparison of the blunted regions in 

the samples themselves. 

The strips were tested to ultimate load as before.  Figure 

4.16 shows the variation of ultimate stress with applied load 

during the melting.  Ultimate stress is plotted as a function of 

crack radius in Figure 4.17.  Some scatter is evidenced in each 

case and the correlation coefficients are 0.61 and 0.80, 

respectively. 

All specimens in the second group are blunted while under an 

applied load of 700 pounds.  The size of the applied voltage 

ranges from 2.5 to 5.0 kV.  In Figure 4.18 the graph of crack 
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radius versus applied voltage is shown.  Ultimate strength tests 

are performed on these strips and the relationship between 

ultimate stress on the net section and effective crack-tip radius 

is shown in Figure 4.19.  Both of these Figures show linear 

regression curves for which the correlation coefficients are 0.77 

and 0.31, respectively.  A large amount of scatter resulted in 

especially poor agreement in the second figure.  Additional 

sampling points are necessary to define this relationship more 

accurately. 

From Figure 4.17 one can see that a maximum increase in 

ultimate strength of over 78 percent is possible by loading the 

specimens.  The second series of loaded specimens also indicates 

an increase in ultimate stress of over 78 percent as shown in 

Figure 4.19. 

4.3.3 DISCUSSION OF Ti-6A1-4V TEST RESULTS 

This section concludes the chapter by pointing out the 

highlights in the titanium data and comparing these results to the 

results from stainless steel. 

Some of the conclusions from the titanium experiments have 

already been drawn in the preceding discussion.  For example, the 

need for a 700 lb tensile load on the titanium specimens to force 

melting to occur at the crack tip was discussed in section 4.3.2. 
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To summarize for the titanium, Figure 4.14 shows a maximum 

increase in ultimate stress of 70 percent in the unloaded titanium 

samples.  The largest improvement in the loaded specimens is over 

78 percent as indicated by Figure 4.17. 

Tests confirm the notion that a brittle material such as 

Ti-6Al-4V will show greater gains in strength than a ductile 

material such as stainless steel 304.  As a comparison, the linear 

regression curves for stainless steel, unloaded titanium, and 

loaded titanium are shown together in Figure 4.20.  Clearly, the 

curves for titanium are steeper than that of stainless steel.  The 

slope of the loaded titanium samples is over 460 percent greater 

than the slope for stainless steel 304. 
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CHAPTER 5 

STRESS ANALYSIS OF TEST SPECIMENS 

The state of stress in the electromagnetically blunted 

specimens is examined in this chapter.  Stress concentration 

solutions and finite element analysis are used to study the 

stresses.  An equivalent stress intensity factor approach is then 

applied to the results of Chapter 4 to express that data in a new 

format. 

5.1 STRESS CONCENTRATION FACTORS 

The value of stress concentration factors in the stress 

analysis of nonsingular disturbances was pointed out in section 

2.1.  Although stress concentration factors cannot be utilized to 

130 
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describe the crack situation, they are applied to the blunted 

case.  They also are useful in section 5.3 in extending the stress 

intensity factor approach to the blunted geometry. 

Stress concentration factors can be determined in several 

ways.  Results of photoelastic studies and analytical solutions 

are considered in this study.  Values for many different 

geometries are widely tabulated.  Solutions, however, have not 

been developed for the configuration shown .in Figure 2.1(a). 

Based on the earlier rationalization, the geometry in Figure 

2.1(c) may be used in place of the actual geometry without a 

significant loss in accuracy. 

Testing the specimens discussed in Chapter 4 for ultimate 

capacity involves application of a uniform load at the ends of the 

strip.  This condition is equivalent to the situation shown in 

Figure 5.1(c).  Solutions for this geometry are available for a 

load applied along the centerline of the remaining area, Figure 

5.1(a), but not for a load applied along the centerline of the 

entire strip.  To develop a useable analysis, therefore, it is 

necessary to superimpose the solution for a load along the 

specimen centerline. Figure 5.1(a), and the solution for an 

applied end moment, Figure 5.1(b).  The end moment is the product 

of the load and e, the eccentricity of this load from the 

centerline of the net section. 
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For a concentrated load applied along the centerline of the 

net section, Neuber [3] presents an analytical solution for the 

stress concentration at a hyperbolic or elliptical notch.  These 

solutions are only an approximation for the U shaped notch under 

study.  Photoelastic studies of the circular notch were conducted 

by Cole and Brown [26].  These results are used to determine the 

stress concentration factors for the configuration in Figure 

5.1(a). 

In general, the configuration tested by Cole and Brown is the 

same as the problem at hand.  However, the range of sizes 

considered in that study does not cover completely the range of 

samples considered in the experiments of Chapter 4.  Therefore, by 

performing a logarithmic regression of Cole and Brown's results, 

the analysis was extended to include the necessary geometries. 

The curve which was developed is shown in Figure 5.2. 

To complete the superposition of Figure 5.1, the stress 

concentration factors for an end moment applied to a strip 

containing a U-notch are required.  Peterson [27] summarizes the 

results of a photoelastic analysis of this configuration conducted 

by Leven and Frocht [28].  As before, the range of sizes 

considered in the study does not cover all the possible sizes of 

test pieces in Chapter 4.  Figure 5.3 shows the curve obtained 

from a logarithmic regression used to extend the analysis to the 

required geometries. 
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To combine the stress concentration factors for 

configurations 5.1(a) and 5.1(b), the maximum stress in each case 

at the tip of the notch is summed.  The maximum stress for case 

(a), (a)   , is expressed in terms of its stress concentration a max 

factor K and the nominal stress on the net section: a 

(^a^max = ^ %om = ^ hi"     " (5-1) 

in which P is the concentrated load, h is the thickness, and a is 

the width of the strip at the narrowest section.  The dimensions 

are shown in Figure 5.1.  For case (b) the corresponding 

expression for the maximum stress, (C7, )   , is based on the peak 
b max '^ 

stress considering a moment, M, applied to the net section: 

CM   6P 

in which K, is the stress concentration factor for configuration 

5.1(b).  The moment is taken as the product of the concentrated 

load, P, and the eccentricity, e.  From the geometry of Figure 5.1 

the eccentricity can be written as (d-a)/2. 

Equations (5-1) and (5-2) are now added together to get an 

expression for the maximum stress in the desired situation, 

(O )        .By substituting for e and rearranging, one has: 
c max 
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("cU = H [^a * S 3""/^' -'^ "-^> 

The next step is to substitute in the expressions for K and 

K, which are obtained by logarithmic regression.  These 

relationships are given in Figures 5.2 and 5.3.  Furthermore, the 

peak stress is put in terms of a single stress concentration 

factor, K , by dividing by the nominal stress, P/ha: 

K = Miax __  ^^^^07, (,/a)-0-357 , c(r/a)-°'^^^]  ,     (3-4) 

^   ^nom 

in which 

C = 2.91[(d/a) - 1] (3-5) 

Finally, equation (5-4) expresses the stress concentration at 

the end of a notch in a flat strip due to a concentrated load 

applied along the centerline of the full section.  The 

concentration is given in terms of a stress concentration factor 

based on the nominal stress on the net section.  A check on 

equation (5-4) is provided at the end of the next section when 

this approach is compared to the finite element method. 
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5.2 FINITE ELEMENT ANALYSIS 

One virtue of the finite element method is its ability to 

analyze a variety of problems.  In Chapter 3 the finite element 

method is used to compute electric currents, but in this section 

it is applied to the stress analysis of the test strips [29]. 

By taking advantage of the symmetry of the problem, the 

configuration to be analyzed is reduced to that shown in Figure 

5.4.  In particular, the important sizes to be considered are a, 

r, and d as shown in Figure 5.4.  The width of the samples, d, is 

a constant, 19mm, and the other dimensions are expressed as 

ratios, a/d and r/d.  To provide a comprehensive study, the full 

range of dimensions is taken from the specimens of Chapter 4.  The 

upper and lower limits for a/d are found to be 14.44 and 11.97, 

while r/d ranges from 0.038 to 0.009.  In each case, the range of 

ratios is covered by choosing the intermediate values shown in 

Table 5.1. 

Three different aspects of the problem are used to summarize 

the analysis.  First, in Figure 5.5, the variation of maximum 

stress, o   ,   along a radius at 0=0 is shown for one representative 

geometry.  In this case one can observe the stress gradients are 

very steep near the crack-tip.  Similar distributions are found 

for other sizes.  The stresses here are based on a uniformly 

applied load of unity as shown in Figure 5.4.  Second, the 

tangental stress distribution around the circumference of the hole 

in each geometry is given in Figures 5.6, 5.7, 5.8, 5.9, and 5.10. 
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Table 5.1 Representative Geometries for Finite Element 
Stress Analysis of Blunted Crack Configuration 
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Third, the results are presented in terms of the stress 

concentration factor at the end of each notch.  The stress 

concentration factors in Figure 5.11 are based on the full section 

while those in Figure 5.12 are computed for the net section.  In 

these figures the stress concentration factor is plotted over the 

full range of r/d for each value of a/d. 

For comparison with the results of the previous section, the 

stress concentration factors based on net section for a/d=0.63 are 

plotted in Figure 5.13 versus r/d.  This graph shows values 

determined from both finite element analysis and equation (5-4). 

The factors from finite element analysis are 12 to 20 percent less 

than the corresponding value from section 5.1. 

These results indicate the stress concentration increases as 

the notch becomes deeper and as the radius of curvature decreases. 

This supports the conclusion in Chapter 2 that as the radius goes 

to zero the notch becomes a crack and the stress concentration 

factor goes to infinity in the limit. 

The stress concentration factor approach cannot fully 

describe the desired range of specimen geometries for the 

electromagnetic blunting problem because this approach is not 

applicable to the limiting case of the cracked specimen. 

Moreover, stress concentration factors cannot be used to explain 

the increase in load capacity in the blunted samples over the 
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unblunted samples.  Therefore, a more inclusive approach involving 

stress intensity factors is proposed in the next section. 

5.3 STRESS INTENSITY FACTORS 

Stress intensity factors are widely used in the analysis of 

cracks.  Further, with certain assumptions these factors can be 

used to analyze the blunted test specimens from the experiments of 

Chapter 4.  However, this study recognizes that stress intensity 

factors do not apply directly to the blunted case.  Section 2.1.3 

emphasizes this point.  The reasons for this are discussed in more 

detail later in this section.  First, however, the stress 

intensity factor approach is used for the cracked geometry where 

it is directly applicable. 

5.3.1 STRESS INTENSITY FACTOR FOR THE UNBLUNTED CASE 

Although the stress intensity approach is valid here in terms 

of the singular behavior in the cracked strip, one must also 

consider the restriction of small-scale yielding.  Section 2.1.3 

points out that most of linear elastic fracture mechanics is 

developed for plane strain situations.  The important 

characteristic of plane strain here is that the plastic region at 

the crack-tip is generally small.  For a plane stress situation 

such as the test strips, the plastic zone may not be small. 
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Section 2.1.3 also notes the inconsistent usage of the terms 

"plane stress" and "plane strain" in fracture mechanics 

literature.  As an alternative to the generalizations offered by 

these terms, more specific methods have been developed to 

determine whether small-scale yielding exists.  These techniques 

generally involve calculating the size of the plastic zone and 

comparing it to the "least dimension" of the structure.  The least 

dimension refers to the distance extending from the crack-tip to 

the nearest boundary. 

Calculation of the plastic zone size was discussed in Section 

4.2.4 as a method of choosing a material in which the yielded 

region would be small.  The latter section pointed out that 

calculating this quantity is uncertain because many factors which 

influence it are not included in a general model.  The suggested 

method of computing plastic zone size is presented here as it was 

in Section 4.2.4. 

Expressions used to estimate the plastic zone size, p, are of 

the form: 

P = "(K/a^)^ 'X  /  (5-6) 

in which K is the stress intensity factor and a  is the yield 

stress of the material.  As before, n is taken to be TI/8 for plane 

stress following the sugestion of Hahn and Rosenfield [30].  This 
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relationship is plotted for a wide range of values in Figure 4.11. 

For the specimen dimensions under consideration, the value of p 

was found to exceed the limit required for small-scale yielding as 

given in Reference 30. 

Without the condition of small-scale yielding the accuracy of 

the stress intensity factor is sacrificed as indicated in Section 

2.1.3.  However, the latter section also points out that the 

stress intensity approach can be used successfully for comparison 

of various situations which is its main purpose in this study. 

The value of K for the fractured strip can be computed in 

any one of the ways noted in Section 2.1.3.3.  An analytical 

expression for K^ based on elasticity is given by Hellan [29] for 

this case.  For the dimensions shown in Figure 5.14(a) this 

equation is: 

Kj = oAc  f(c/d) ^^_^^ 

in which 

f(c/d) = [1.12 - 0.23(c/d) + 10.6(c^/d^) 

- 2.17(cW) + 30.4(cW)] (5-8) 

In these formulas c is the crack length and O  is the stress 

applied at infinity. 
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For the titanium specimen shown in Figure 4.1(b) the stress 

intensity factor at the moment of incipient crack propagation is 

computed to be 74.1 MPa\/^.  In equation (5-7) c is taken as 6mm 

and the applied stress is the failure load on the full section. 

Since this value of K is computed using the ultimate stress, 

it is considered to be the critical stress intensity factor, K  , 
Ic 

for this situation.  The discussion of critical stress intensity 

factors in Section 2.1.3.4 indicates that this plane stress value 

should be much higher than the plane strain value.  The tabulated 

plane strain value, or fracture toughness, is 74.6 MPav/ln for 

Ti-6A1-4V [15].  The difference between the experimental value and 

the tabulated value is less than one percent. 

Two explanations are offered here as to why the plane stress 

value was not observed to be greater than the fracture toughness. 

First, in reality, the situation may actually be one of 

small-scale yielding.  The reason for this is the yield stress 

(825 MPa) and ultimate stress (895 MPa) in Ti-6A1-4V are 

relatively close in contrast to stainless steel with a yield point 

310 MPa and an ultimate stress of 550 MPa.  The yield and ultimate 

strength differ by 78 percent in stainless steel, while they are 

within 7 percent for the titanium alloy.  This observation implies 

that the Ti-6A1-4V fractures soon after it reaches the yield 

point.  This tends to produce a small plastic zone in any 

situation except one in which a shallow stress gradient exists. 

It is shown in Figure 5.5 that the elastic stress gradients are 
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very steep around the blunted crack-tip.  Hence, one can infer 

that the plastic zone in Ti-6A1-4V is small. 

The second explanation, on the other hand, asserts the 

opposite.  The plastic zone size is considered to be large which 

causes significant redistribution of stress.  This results in 

lower stress gradients.  Based on these ideas the critical stress 

intensity factor for the test strip should actually be higher than 

the value computed by Equation (5-7).  This explanation receives 

credibility when one considers the "effective crack size" 

correction proposed by Tada [13].  To provide for large-scale 

yielding, this method suggests that an effective crack size be 

used in calculating stresses and stress intensity factors instead 

of the actual crack length.  The effective crack length is taken 

as the real crack length plus the size of the plastic zone, which 

is computed from Equation (5-6).  In this manner K  is recomputed 

to be 95.7 MPa^. 

Either of these explanations appear plausible.  In the actual 

specimens, the situation is probably a combination of the two 

conditions described here. 

5.3.2 STRESS INTENSITY FACTORS FOR THE BLUNTED GEOMETRY 

This section explains why the stress intensity factors cannot 

be applied to the blunted geometry and then describes a similar 

method which can be used for such cases. 
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Failure can be predicted in a given fracture situation based 

on a comparison with a known critical crack condition.  Therefore, 

in fracture studies it is necessary to compare the severity of a 

crack in a structure to other cracks.  On a macroscopic level, 

cracks exhibit a stress singularity at their tip. Hence, a 

parameter is needed to compare the intensity of stress singularity 

in different cracks.  This parameter is the stress intensity 

factor. 

One can see that the stress intensity factor is valuable for 

studying cracks.  However, difficulties arise when this approach 

is applied to the blunted situation because there is no longer a 

singularity at the tip.  Thus, in a strict sense, the stress 

intensity factor cannot be used for nonsingular geometries. 

The stress intensity factor approach can be applied to the 

case of deep slender notches, however, by selecting the origin of 

the coordinate system to be at a distance r/2 away from the notch 

tip [13].  A slender notch with this coordinate system is shown in 

Figure 5-14(b).  The normal stress in the y-direction, o , is now 

given by: 

'^i    r 36   ,     I 6 
a     = W= -TT- COS ^5- + /f= COS ly 
y    yZTTp  2p 2      yZTTp I 

,        .    9    .    3e 
I + sin j sin Y' (5-9) 

in which K is the same K as in equation (2-3b) and is computed 

in the same way.  The above equation contains no singularity at 
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the notch tip as would occur at the tip of a crack in 

equation (2-3b). 

Equation (5-9) and equation (2-3b) differ only by the 

additional term at the beginning of equation (5-9).  This added 

term is significant only in the region immediately surrounding the 

notch tip.  Blunting of a crack, therefore, is observed to reduce 

the stresses only in the immediate vicinity of the crack tip. At 

points away from the crack tip the distribution is the same in 

both cases. 

For equation (5-9) to be valid the notch must be sufficiently 

deep and slender such that the stress field is very near to that 

of the singular distribution in the crack.  The notch geometry 

under consideration for the test strips is not slender and deep 

enough for this method to apply directly.  However, a quantity 

based on stress intensity concepts can be defined for use in 

comparing the blunted and unblunted geometries.  The value to be 

used for this study is known as the apparent stress intensity 

factor and is denoted by K .  Likewise, the terms "effective 
  q 

stress intensity factor" and "conditional stress intensity factor" 

are used to refer to this quantity. 

For the test strip configuration, K is defined by equation 

(5-7) which is the corresponding stress intensity factor 

expression for the geometry containing a singularity.  Hence, in 

the case of the unblunted specimen (e.g., zero effective crack-tip 

radius) the value of K is equal to K^.  With f(c/d) given by 
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Equation (5-8) and the dimensions shown in Figure 5.14(b), one 

can write: 

K = aAF f(c/d) (5-10) 
q 

in which K is the "apparent stress intensity factor." It should 

be noted that equation (5-7), and hence equation (5-10) as well, 

is based on an elasticity solution using the boundary collocation 

method [31]. 

Equation (5-10) is used to compute the apparent stress 

intensity factor for each of the titanium samples tested in 

Section 4.3.  In each case the applied stress, CJ , is taken as the 

stress on the full section at failure.  Therefore, the value 

determined for each test specimen is refered to as the critical 

apparent stress intensity factor or critical K . 

Figure 5.15 shows the results of these calculations plotted 

versus crack, radius.  The solid line in this figure is obtained 

from a linear regression analysis.  A reasonably close fit is 

indicated by the correlation coefficient of 0.84.  One can see 

from this graph that blunting produces a maximum increase of close 

to 100 percent in critcal K over the unblunted case. 
q 

Furthermore, a 156 percent increase in critical K is observed 

over the whole range of values. 
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Up to this point only analytical expressions have been used 

to compute stress intensity factors and K values.  Section 
q 

2.1.3.3 indicates several other methods available for computing 

stress intensity factors.  Likewise, these techniques can be 

extended to the calculation of apparent stress intensity factors 

as well.  The stress concentration factor approach and finite 

element method mentioned in Chapter 2 are applied here to the 

blunted specimens.  Computationally, the two approaches are the 

same since K is determined from a stress concentration factor in 
q 

both cases.  The difference, however, is that the stress 

concentration factor is determined by photoelasticity in one case 

and by finite element analysis in the other. 

To develop a relationship between stress concentration factor 

and apparent stress intensity factor, consider the notch 

configuration in Figure 5.14(b).  For this geometry the normal 

y-direction stress distribution, a is given by equation (5-10). 

The maximum stress as given by this expression occurs at P = r/2 

and 6=0.  With these coordinates, equation (5-10) is set equal 

to the maximum stress in terms of the appropriate stress 

concentration factor.  The resulting relationship can be solved 

for the stress intensity factor, K^.  This expression can then be 

used to calculate stress intensity factors, K , which for the 

blunted test strips correspond to the apparent stress intensity 

factors, K .  The expression in this case is: 

^=4^^^nom (5-11) 
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in which K is the relevant stress concentration factor, O is 
c nom 

the average stress on the net section, and r is the crack radius. 

The critcal apparent stress intensity factor based on the 

photoelastically determined stress concentration factor is plotted 

versus crack radius in Figure 5.16.  The corresponding curve based 

on the stress concentration factor from finite element analysis is 

given in Figure 5.17.  A linear regression analysis in each case 

resulted in the solid line shown in each figure.  The correlation 

coefficients were 0.92 and 0.93, respectively, which indicate that 

fairly consistent values of K are obtained from these methods. 
q 

In the case of the photoelastic stress concentration factors, the 

maximum increase in K is 132 percent while an increase of 150 
q 

percent is observed in the finite element related values of the 

critical apparent stress intensity factor. 

To compare the three methods of calculating apparent stress 

intensity factors, the graph of critical K versus crack radius 

for each case are combined in Figure 5.18. 

In summary, stress intensity factors are developed 

specifically to compare the severity of different stress 

singularities and, therefore, cannot be applied directly to the 

blunted geometries.  This section, however, describes an 

equivalent approach for nonsingular geometries which uses apparent 

stress intensity factors.  The latter method is then used to 

express the results of the electromagnetic blunting tests of 

Chapter 4. 
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CHAPTER 6 

CONCLUSION 

In this study two problems in electromagnetics are addressed. 

First, existing programs for the analysis of eddy currents in thin 

plates are extended to include transport currents.  Second, the 

electromagnetic blunting of fatigue cracks is investigated 

experimentally.  A separate section containing a summary, 

conclusions, and further research is devoted to each of these 

topics. 

6.1 NUMERICAL ANALYSIS OF ELECTRIC CURRENTS 

Numerical analysis of electric currents, as it is considered 

in this study, is summarized in the first section below. This is 

followed by a description of the conclusions which can be drawn 

166 
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from the work to date and a list of suggestions for further 

research. 

6.1.1 SUMMARY 

A procedure for including transport currents in the niomerical 

analysis of electric currents in thin plates is developed and 

implemented.  The method for analyzing transport currents is based 

on an extension of an original stream function solution for 

induced currents in thin plates.  Finite element analysis is used 

to determine the value of the stream function over the plate.  The 

expanded version of the program is capable of solving problems in 

which an external time-dependent magnetic field is or is not 

present.  The proposed technique for admitting transport currents 

is presented in terms of necessary changes to the original 

formulation and changes to the finite element system of equations 

at the program level. 

On the theoretical level, inclusion of transport currents 

involves changes to the governing integro-differential equation 

and changes to the boundary conditions.  In the finite element 

solution of the problem, these modifications correspond to changes 

in the formulation and changes to allow nonzero boundary 

conditions. 
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By approaching the problem from a theoretical standpoint, one 

finds that the revised form of the governing relationship includes 

additional edge terms which are related to the nonzero value of 

the stream function on the edges.  For simple configurations, an 

equivalent method for implementing the edge terms is proposed and 

shown to be acceptable for including their effect. 

For the changes in boundary conditions, the finite element 

equations are rearranged to admit nonzero values at the edges. 

The revised system of equations requires the evaluation of a 

previously undetermined portion of the overall stiffness matrix. 

The above changes are implemented in EDDYl which is 

subsequently verified both experimentally and analytically.  For 

the two-dimensional program, EDDY2, the necessary changes in the 

formulation are outlined and preliminary steps are taken in the 

program. 

6.1.2 CONCLUSIONS 

Transport currents are added to the numerical analysis of 

induced currents in thin plates by making the necessary changes in 

the formulation and in the boundary conditions.  Two alternatives 

are available for implementing the correct formulation in the 

one-dimensional program.  Either the additional terms can be 

included directly in the solution procedure, or an equivalent 
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magnetic field can be applied to the plate which represents the 

effect of these terms.  Nonzero boundary conditions must be 

included by appropriately rearranging stiffness terms. 

In the case of a one-dimensional plate, the edge terms 

represent an induced field generated by currents along the edges 

of the plate due to nonzero values of the stream function there. 

The effect of this induced field is felt only for high frequecies 

and influences the solution by only about five percent in these 

cases. 

6.1.3 SUGGESTIONS FOR FURTHER RESEARCH 

While the influence of the edge terms in the one-dimensional 

case is accounted for, the corresponding effect in two-dimensions 

remains to be studied.  Based on an investigation of this case, a 

satisfactory method for including the edge effects should be 

developed.  This case may require full implementation of the edge 

terms in the formulation.  However, the possibility of developing 

an equivalent technique which is easier to implement, such as in 

the one-dimensional case, should be pursued.  An open question is 

the posing of proper boundary conditions and edge terms along a 

portion of the edge across which current is flowing.  For the 

local case, this question is trivial, but significant nonlocal 

effects make the variation of the stream function along such 

segments unknown. 
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In relation to the changes already made, a parallel 

development in graphics capabilities of these programs is 

advisable.  The general features which would be useful include: 

1. The ability to specify graphically the applied transport 

current (via nonzero boundary conditions) using the 

preprocessor. 

2. A graphical display of the input transport current. 

3. A graphical display of the current distribution in a plate 

resulting from an applied transport current as well as an 

applied magnetic field. 

4. The new version of the program is currently limited to a 

maximum of 52 nodes by the size of [K.„] and related matrices. 

This limitation would best be alleviated by using dynamic 

allocation for these arrays.  However, the disadvantage is 

that the overall modifications would be less separate from the 

original program as a result. 

In the two-dimensional case the transport current capability 

would be useful in analyzing the electromagnetic blunting problem 

described in the second part of this study.  By modifying the 

programs in this way, one could the investigate the experiments 

analytically as well.  The temperature distribution determined 

from the current solution would be especially useful for 

predicting the amount of current needed for melting holes at 

crack-tips in a material of a given type. 
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A synopsis of the experimental work done in this area is 

presented in the next section. 

6.2 ELECTROMAGNETIC CRACK-TIP BLUNTING 

This section first summarizes the experiments conducted on 

the electromagnetic blunting of fatigue cracks.  Conclusions based 

on these results are drawn in the second section.  In the last 

section, recommendations for additional study in this area are 

presented. 

6.2.1 SUMMARY 

To investigate the proposed method of crack-tip blunting, 

thin strips of stainless steel 304 and titanium alloy Ti-6A1-4V 

are used.  These samples contain either a razor notch or a fatigue 

crack in one side.  To blunt these stress risers, a current pulse 

is applied to each specimen which causes a sufficient current 

concentration at each crack tip to melt a hole.  In some cases the 

Ti-6A1-4V strips are blunted while loaded in tension to prevent 

current from jumping across the crack.  A series of the stainless 

steel samples is also blunted by drilling rather than melting a 

hole to study the effects of electromagnetic heating on the 

surrounding metal. 
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The hole dimensions in all of these specimens are measured. 

Each strip is then loaded to failure under static, direct tension 

and the ultimate stress on the remaining section is computed. 

6.2.2 CONCLUSIONS 

Based on the experimental results, there are two general 

observations which can be made that are of primary interest.  The 

first is that blunting of a crack produces an increase in the 

static ultimate strength of the plate member containing the crack. 

In stainless steel the maximum increase is 19 percent while the 

corresponding increase in titanium is 78 percent.  Second, in the 

context of the critical apparent stress intensity factors computed 

in Chapter 5, blunting produces an increase in fracture toughness. 

More specific conclusions which can be drawn are: 

1. For stainless steel, comparison of the electromagnetic and 

drilled hole results indicates that heating during the 

electromagnetic blunting procedure has no significant effect 

on the strength of the material. 

2. An external magnetic field applied transversely to a strip 

during the blunting procedure influences the size of the hole 

which is created.  The hole size increases when the external 

magnetic field amplifies the induced transverse magnetic 

field.  Conversely, when the external magnetic field opposes 

the induced transverse field the resulting hole is smaller. 
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The external magnetic field is found to have no significant 

effect on strength characteristics other than the hole size. 

Based on these observations, an external field may be of use 

in creating larger holes for a fixed amount of current. 

3. The nitrogen cooling jet is found to have an effect similar to 

that of the external magnetic field.  Again, the ultimate 

strength is influenced only through the effect on the size of 

the hole produced.  However, the degree of influence on hole 

size in the case of the nitrogen jet is much less than in the 

case of the external magnetic field.  The cooling jet is 

observed to have a much greater effect on the shape of the 

hole rather than its size.  By forcing the nitrogen into the 

crack, the hole is pushed farther into the specimen and the 

resulting shape is rounded and squat.  Application of the jet 

in the opposite direction creates a narrower hole located 

nearer to the cracked edge. 

4. During the initial testing of titanium the applied current is 

observed to jump across the crack, and this arcing results in 

incomplete hole formation.  Subsequent tests show that a 

tensile load on the strips can open the crack enough to 

prevent this problem.  In stainless steel this effect is not 

evident.  This observation indicates the brittle nature of 

titanium and the smaller amount of plastification it exhibits 

in the vicinity of a crack. 
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5. For fatigue cracked specimens, many of the same conclusions 

are drawn from both the titanium and stainless steel results. 

Both metals show that larger holes are created by applying 

larger current pulses.  Considerable scatter exists in the 

relationship between hole size and applied current.  From the 

static ultimate strength tests in both metals one can see that 

ultimate stress increases as with increasing hole size and 

applied current.  Specifically, a maximum increase in ultimate 

stress of 78 percent is possible in titanium strips under 

load.  Even greater gains in strength may be possible by 

creating even larger holes.  The slope decreases in Figure 

4.17, however, which indicates a limit may be reached in the 

ultimate stress.  Comparison of these relationships for both 

metals indicates that a greater increase in ultimate stress is 

possible with titanium.  Since the size of the plastic zone in 

Ti-6A1-4V is small, the percentage of this yield region which 

is removed in the blunting procedure is greater.  Hence, the 

relative proportion of yielded to unyielded material in the 

remaining cross section is less. 

6. In titanium, other trends are evident in the data involving 

the load applied during the blunting process.  An increase in 

applied load produces a larger hole size and, hence, a related 

increase in ultimate stress as well. 
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7.  Conclusions regarding the changes in fracture properties as a 

result of the blunting process can be made from the data 

presented in Chapter 5.  The interpretations of these results, 

however, must be drawn in the context in which they are 

developed.  That it to say, the results can be used to predict 

the initiation of fracture in similar circumstances but their 

application to other situations is not valid because the 

critical value of K is highly situation-dependent.  Hence, the 

critical value is affected by a number of factors which cannot 

be accounted for in a simple theory.  With this in mind, the 

trends are expressed in terms of a value called "K 

conditional" or apparent stress intensity factor.  Three 

methods are used to calculate this parameter which is denoted 

by K .  Based on the analytical method, the blunting procedure 

is shown to increase the critical value of K nearly 100 
q 

percent over the value for the crack alone. The second and 

third procedures were based on stress concentration factors 

and, therefore, a K value for the unblunted case could not be 
q 

computed.  However, the average maximum increase in critical 

K for these two methods is found to be over 140 percent. 
q 

Even greater gains in critical K may be possible by producing 

larger values of effective crack-tip radius. 
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6.2.3 SUGGESTIONS FOR FURTHER RESEARCH 

The blunting of cracks explored in this study is only one of 

the many potential applications of electromagnetic phenomena to 

cracks.  Several interesting possibilities for applying 

electromagnetic effects to damaged structures, other than 

blunting, are described later in this section.  First, other 

facets of electromagnetic blunting which deserve further 

investigation are discussed. 

1. Subsequent work should consider aspects of fracture behavior 

other than the ultimate stress and apparent stress intensity 

factor.  For example, a study of the effect of blunting on the 

fatigue crack growth rate would be valuable. 

2. Some of the recently proposed methods for fracture analysis of 

elastic-plastic situations may be useful in describing the 

results of these experiments.  For the plane stress test 

strips these techniques may be especially valuable in light of 

the discussion of small-scale yielding in Section 5.3.1. 

Methods of analysis in elastic-plastic fracture mechanics have 

not been uniformly accepted, but Rolfe and Barsom [12] point 

out three which appear to hold promise:  R-curve analysis, 

Crack-Opening Displacement (COD), and J-Integrals.  The 

advantages and disadvantages of each of these approaches 

should be weighed in choosing the best methods for describing 

the experimental results. 
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3. Additional study should be devoted to the effects of external 

magnetic fields and cooling during the blunting process. 

Other methods of cooling should be investigated.  For example, 

immersing the specimens in a cooling medium during the 

blunting process may prove to have significant results. 

4. By using the drilled hole procedure as in the case of 

stainless steel, the effect of heating during the blunting 

procedure should also be investigated in titanium. 

5. Experiments should be conducted in other materials. 

Particular consideration should be given to brittle materials 

since they appear to show the most promise based on the 

comparison of titanium and stainless steel in this study. 

6. Brittle fracture and fatigue problems occur in structures 

under a wide variety of conditions.  In many cases, the 

resistance of structural materials to fracture and fatigue is 

reduced by exposure to corrosive environments such as water, 

salt water, oil, temperature extremes, etc.  Blunting cracks 

under these conditions may result in even greater gains in 

ultimate strength and fracture resistance than are shown in 

this study for controlled environments.  Subsequent work, 

therefore, should include tests under different conditions 

which simulate a variety of corrosive environments. 
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Possibilities exist for applying electromagnetic effects to 

damaged structures other than the blunting considered in this 

study.  Some of the areas which should be investigated are listed 

below. 

1. By enclosing the crack with material on both sides, or in the 

case of an embedded three-dimensional crack, the molten metal 

may be forced into the crack rather than out of the body, 

resulting in a rewelded crack. 

2. By closing the crack under load and using controlled melting, 

it may be possible to remelt the metal locally such that the 

two surfaces are fused together. 

3. Although this study used transport currents to melt the 

material, induced currents may be used to achieve the same 

effect.  In many cases, the induced current method may be more 

convinient because it does not require extensive attatchments 

to the structure to apply the current.  Moreover, it may be 

the only way to blunt or reweld in cases where the crack is 

inaccessible by other means. 

4. Electromagnetic effects may be especially valuable in welded 

structures. Considerable possibilities exist for the use of 

such methods in repairing faulty welds. 
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